Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  8even Structured version   Visualization version   GIF version

Theorem 8even 40160
Description: 8 is an even number. (Contributed by AV, 23-Jul-2020.)
Assertion
Ref Expression
8even 8 ∈ Even

Proof of Theorem 8even
StepHypRef Expression
1 8nn 11068 . . 3 8 ∈ ℕ
21nnzi 11278 . 2 8 ∈ ℤ
3 4t2e8 11058 . . . . . 6 (4 · 2) = 8
43eqcomi 2619 . . . . 5 8 = (4 · 2)
54oveq1i 6559 . . . 4 (8 / 2) = ((4 · 2) / 2)
6 4cn 10975 . . . . 5 4 ∈ ℂ
7 2cn 10968 . . . . 5 2 ∈ ℂ
8 2ne0 10990 . . . . 5 2 ≠ 0
96, 7, 8divcan4i 10651 . . . 4 ((4 · 2) / 2) = 4
105, 9eqtri 2632 . . 3 (8 / 2) = 4
11 4z 11288 . . 3 4 ∈ ℤ
1210, 11eqeltri 2684 . 2 (8 / 2) ∈ ℤ
13 iseven 40079 . 2 (8 ∈ Even ↔ (8 ∈ ℤ ∧ (8 / 2) ∈ ℤ))
142, 12, 13mpbir2an 957 1 8 ∈ Even
Colors of variables: wff setvar class
Syntax hints:  wcel 1977  (class class class)co 6549   · cmul 9820   / cdiv 10563  2c2 10947  4c4 10949  8c8 10953  cz 11254   Even ceven 40075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-z 11255  df-even 40077
This theorem is referenced by:  8gbe  40195  9gboa  40196  bgoldbtbndlem1  40221
  Copyright terms: Public domain W3C validator