MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6gcd4e2 Structured version   Visualization version   GIF version

Theorem 6gcd4e2 15093
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6gcd4e2 (6 gcd 4) = 2

Proof of Theorem 6gcd4e2
StepHypRef Expression
1 6nn 11066 . . . 4 6 ∈ ℕ
21nnzi 11278 . . 3 6 ∈ ℤ
3 4z 11288 . . 3 4 ∈ ℤ
4 gcdcom 15073 . . 3 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6))
52, 3, 4mp2an 704 . 2 (6 gcd 4) = (4 gcd 6)
6 4cn 10975 . . . 4 4 ∈ ℂ
7 2cn 10968 . . . 4 2 ∈ ℂ
8 4p2e6 11039 . . . 4 (4 + 2) = 6
96, 7, 8addcomli 10107 . . 3 (2 + 4) = 6
109oveq2i 6560 . 2 (4 gcd (2 + 4)) = (4 gcd 6)
11 2z 11286 . . . . 5 2 ∈ ℤ
12 gcdadd 15085 . . . . 5 ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2)))
1311, 11, 12mp2an 704 . . . 4 (2 gcd 2) = (2 gcd (2 + 2))
14 2p2e4 11021 . . . . . 6 (2 + 2) = 4
1514oveq2i 6560 . . . . 5 (2 gcd (2 + 2)) = (2 gcd 4)
16 gcdcom 15073 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2))
1711, 3, 16mp2an 704 . . . . 5 (2 gcd 4) = (4 gcd 2)
1815, 17eqtri 2632 . . . 4 (2 gcd (2 + 2)) = (4 gcd 2)
1913, 18eqtri 2632 . . 3 (2 gcd 2) = (4 gcd 2)
20 gcdid 15086 . . . . 5 (2 ∈ ℤ → (2 gcd 2) = (abs‘2))
2111, 20ax-mp 5 . . . 4 (2 gcd 2) = (abs‘2)
22 2re 10967 . . . . 5 2 ∈ ℝ
23 0le2 10988 . . . . 5 0 ≤ 2
24 absid 13884 . . . . 5 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
2522, 23, 24mp2an 704 . . . 4 (abs‘2) = 2
2621, 25eqtri 2632 . . 3 (2 gcd 2) = 2
27 gcdadd 15085 . . . 4 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4)))
283, 11, 27mp2an 704 . . 3 (4 gcd 2) = (4 gcd (2 + 4))
2919, 26, 283eqtr3ri 2641 . 2 (4 gcd (2 + 4)) = 2
305, 10, 293eqtr2i 2638 1 (6 gcd 4) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   + caddc 9818  cle 9954  2c2 10947  4c4 10949  6c6 10951  cz 11254  abscabs 13822   gcd cgcd 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  6lcm4e12  15167
  Copyright terms: Public domain W3C validator