Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  6gbe Structured version   Visualization version   GIF version

Theorem 6gbe 40193
 Description: 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
6gbe 6 ∈ GoldbachEven

Proof of Theorem 6gbe
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6even 40158 . 2 6 ∈ Even
2 3prm 15244 . . 3 3 ∈ ℙ
3 3odd 40155 . . . 4 3 ∈ Odd
4 gbpart6 40188 . . . 4 6 = (3 + 3)
53, 3, 43pm3.2i 1232 . . 3 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))
6 eleq1 2676 . . . . 5 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
7 biidd 251 . . . . 5 (𝑝 = 3 → (𝑞 ∈ Odd ↔ 𝑞 ∈ Odd ))
8 oveq1 6556 . . . . . 6 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
98eqeq2d 2620 . . . . 5 (𝑝 = 3 → (6 = (𝑝 + 𝑞) ↔ 6 = (3 + 𝑞)))
106, 7, 93anbi123d 1391 . . . 4 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞))))
11 biidd 251 . . . . 5 (𝑞 = 3 → (3 ∈ Odd ↔ 3 ∈ Odd ))
12 eleq1 2676 . . . . 5 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
13 oveq2 6557 . . . . . 6 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
1413eqeq2d 2620 . . . . 5 (𝑞 = 3 → (6 = (3 + 𝑞) ↔ 6 = (3 + 3)))
1511, 12, 143anbi123d 1391 . . . 4 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (3 + 𝑞)) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))))
1610, 15rspc2ev 3295 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 6 = (3 + 3))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞)))
172, 2, 5, 16mp3an 1416 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))
18 isgbe 40173 . 2 (6 ∈ GoldbachEven ↔ (6 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 6 = (𝑝 + 𝑞))))
191, 17, 18mpbir2an 957 1 6 ∈ GoldbachEven
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  (class class class)co 6549   + caddc 9818  3c3 10948  6c6 10951  ℙcprime 15223   Even ceven 40075   Odd codd 40076   GoldbachEven cgbe 40167 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-even 40077  df-odd 40078  df-gbe 40170 This theorem is referenced by:  nnsum3primesle9  40210
 Copyright terms: Public domain W3C validator