HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem4 Structured version   Visualization version   GIF version

Theorem 5oalem4 27900
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion
Ref Expression
5oalem4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))

Proof of Theorem 5oalem4
StepHypRef Expression
1 eqtr3 2631 . . . 4 (((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
2 5oalem3.1 . . . . 5 𝐴S
3 5oalem3.2 . . . . 5 𝐵S
4 5oalem3.3 . . . . 5 𝐶S
5 5oalem3.4 . . . . 5 𝐷S
62, 3, 4, 55oalem2 27898 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
71, 6sylan2 490 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
87adantlr 747 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
9 5oalem3.5 . . 3 𝐹S
10 5oalem3.6 . . 3 𝐺S
112, 3, 4, 5, 9, 105oalem3 27899 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
128, 11elind 3760 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cin 3539  (class class class)co 6549   + cva 27161   cmv 27166   S csh 27169   + cph 27172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-nn 10898  df-grpo 26731  df-ablo 26783  df-hvsub 27212  df-hlim 27213  df-sh 27448  df-ch 27462  df-shs 27551
This theorem is referenced by:  5oalem5  27901
  Copyright terms: Public domain W3C validator