Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem4a Structured version   Visualization version   GIF version

Theorem 4sqlem4a 15493
 Description: Lemma for 4sqlem4 15494. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem4a ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝐴,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem4a
StepHypRef Expression
1 gzcn 15474 . . . 4 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
21absvalsq2d 14030 . . 3 (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
3 gzcn 15474 . . . 4 (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ)
43absvalsq2d 14030 . . 3 (𝐵 ∈ ℤ[i] → ((abs‘𝐵)↑2) = (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))
52, 4oveqan12d 6568 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) + (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
6 elgz 15473 . . . . 5 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
76simp2bi 1070 . . . 4 (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ)
86simp3bi 1071 . . . 4 (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ)
97, 8jca 553 . . 3 (𝐴 ∈ ℤ[i] → ((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
10 elgz 15473 . . . . 5 (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ))
1110simp2bi 1070 . . . 4 (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ)
1210simp3bi 1071 . . . 4 (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ)
1311, 12jca 553 . . 3 (𝐵 ∈ ℤ[i] → ((ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ))
14 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
15144sqlem3 15492 . . 3 ((((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ) ∧ ((ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) + (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ∈ 𝑆)
169, 13, 15syl2an 493 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) + (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ∈ 𝑆)
175, 16eqeltrd 2688 1 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  ∃wrex 2897  ‘cfv 5804  (class class class)co 6549  ℂcc 9813   + caddc 9818  2c2 10947  ℤcz 11254  ↑cexp 12722  ℜcre 13685  ℑcim 13686  abscabs 13822  ℤ[i]cgz 15471 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-gz 15472 This theorem is referenced by:  4sqlem4  15494  mul4sqlem  15495  4sqlem13  15499  4sqlem19  15505
 Copyright terms: Public domain W3C validator