Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem9 Structured version   Visualization version   GIF version

Theorem 4atlem9 33907
 Description: Lemma for 4at 33917. Substitute 𝑊 for 𝑆. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 ((𝑃 𝑄) (𝑅 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑅 𝑊))))

Proof of Theorem 4atlem9
StepHypRef Expression
1 simp11 1084 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ HL)
2 simp22 1088 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑆𝐴)
3 simp23 1089 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑊𝐴)
4 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
51, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝐾 ∈ Lat)
6 simp1 1054 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
7 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 4at.j . . . . . 6 = (join‘𝐾)
9 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 33671 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
116, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑃 𝑄) ∈ (Base‘𝐾))
12 simp21 1087 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑅𝐴)
137, 9atbase 33594 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → 𝑅 ∈ (Base‘𝐾))
157, 8latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
165, 11, 14, 15syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
17 simp3 1056 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
18 4at.l . . . 4 = (le‘𝐾)
197, 18, 8, 9hlexchb2 33689 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑊𝐴 ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 (𝑊 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 ((𝑃 𝑄) 𝑅)) = (𝑊 ((𝑃 𝑄) 𝑅))))
201, 2, 3, 16, 17, 19syl131anc 1331 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 (𝑊 ((𝑃 𝑄) 𝑅)) ↔ (𝑆 ((𝑃 𝑄) 𝑅)) = (𝑊 ((𝑃 𝑄) 𝑅))))
2118, 8, 94atlem4d 33906 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑊𝐴)) → ((𝑃 𝑄) (𝑅 𝑊)) = (𝑊 ((𝑃 𝑄) 𝑅)))
226, 12, 3, 21syl12anc 1316 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) (𝑅 𝑊)) = (𝑊 ((𝑃 𝑄) 𝑅)))
2322breq2d 4595 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 ((𝑃 𝑄) (𝑅 𝑊)) ↔ 𝑆 (𝑊 ((𝑃 𝑄) 𝑅))))
2418, 8, 94atlem4d 33906 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑆 ((𝑃 𝑄) 𝑅)))
256, 12, 2, 24syl12anc 1316 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑆 ((𝑃 𝑄) 𝑅)))
2625, 22eqeq12d 2625 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑅 𝑊)) ↔ (𝑆 ((𝑃 𝑄) 𝑅)) = (𝑊 ((𝑃 𝑄) 𝑅))))
2720, 23, 263bitr4d 299 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (𝑆 ((𝑃 𝑄) (𝑅 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑅 𝑊))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  4atlem10b  33909
 Copyright terms: Public domain W3C validator