Proof of Theorem 4atexlemtlw
Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. 2
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | 4thatlem0.l |
. 2
⊢ ≤ =
(le‘𝐾) |
3 | | 4thatlem.ph |
. . 3
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4 | 3 | 4atexlemkl 34361 |
. 2
⊢ (𝜑 → 𝐾 ∈ Lat) |
5 | 3 | 4atexlemt 34357 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
6 | | 4thatlem0.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 1, 6 | atbase 33594 |
. . 3
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
8 | 5, 7 | syl 17 |
. 2
⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
9 | 3 | 4atexlemk 34351 |
. . 3
⊢ (𝜑 → 𝐾 ∈ HL) |
10 | | 4thatlem0.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
11 | | 4thatlem0.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
12 | | 4thatlem0.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
13 | | 4thatlem0.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
14 | 3, 2, 10, 11, 6, 12, 13 | 4atexlemu 34368 |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
15 | | 4thatlem0.v |
. . . 4
⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
16 | 3, 2, 10, 11, 6, 12, 13, 15 | 4atexlemv 34369 |
. . 3
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
17 | 1, 10, 6 | hlatjcl 33671 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
18 | 9, 14, 16, 17 | syl3anc 1318 |
. 2
⊢ (𝜑 → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
19 | 3, 12 | 4atexlemwb 34363 |
. 2
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
20 | 3 | 4atexlemkc 34362 |
. . 3
⊢ (𝜑 → 𝐾 ∈ CvLat) |
21 | 3, 2, 10, 11, 6, 12, 13, 15 | 4atexlemunv 34370 |
. . 3
⊢ (𝜑 → 𝑈 ≠ 𝑉) |
22 | 3 | 4atexlemutvt 34358 |
. . 3
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
23 | 6, 2, 10 | cvlsupr4 33650 |
. . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≤ (𝑈 ∨ 𝑉)) |
24 | 20, 14, 16, 5, 21, 22, 23 | syl132anc 1336 |
. 2
⊢ (𝜑 → 𝑇 ≤ (𝑈 ∨ 𝑉)) |
25 | 3 | 4atexlemp 34354 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
26 | 3 | 4atexlemq 34355 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
27 | 1, 10, 6 | hlatjcl 33671 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
28 | 9, 25, 26, 27 | syl3anc 1318 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
29 | 1, 2, 11 | latmle2 16900 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
30 | 4, 28, 19, 29 | syl3anc 1318 |
. . . 4
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
31 | 13, 30 | syl5eqbr 4618 |
. . 3
⊢ (𝜑 → 𝑈 ≤ 𝑊) |
32 | 3, 10, 6 | 4atexlempsb 34364 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
33 | 1, 2, 11 | latmle2 16900 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
34 | 4, 32, 19, 33 | syl3anc 1318 |
. . . 4
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ 𝑊) |
35 | 15, 34 | syl5eqbr 4618 |
. . 3
⊢ (𝜑 → 𝑉 ≤ 𝑊) |
36 | 1, 6 | atbase 33594 |
. . . . 5
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
37 | 14, 36 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
38 | 1, 6 | atbase 33594 |
. . . . 5
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
39 | 16, 38 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ (Base‘𝐾)) |
40 | 1, 2, 10 | latjle12 16885 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊) ↔ (𝑈 ∨ 𝑉) ≤ 𝑊)) |
41 | 4, 37, 39, 19, 40 | syl13anc 1320 |
. . 3
⊢ (𝜑 → ((𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊) ↔ (𝑈 ∨ 𝑉) ≤ 𝑊)) |
42 | 31, 35, 41 | mpbi2and 958 |
. 2
⊢ (𝜑 → (𝑈 ∨ 𝑉) ≤ 𝑊) |
43 | 1, 2, 4, 8, 18, 19, 24, 42 | lattrd 16881 |
1
⊢ (𝜑 → 𝑇 ≤ 𝑊) |