Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0aOLDN Structured version   Visualization version   GIF version

Theorem 4atex2-0aOLDN 34382
 Description: Same as 4atex2 34381 except that 𝑆 is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atex2-0aOLDN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧   𝑇,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex2-0aOLDN
StepHypRef Expression
1 simp32l 1179 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑇𝐴)
2 simp32r 1180 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑇 𝑊)
3 simp1l 1078 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
4 hlol 33666 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
53, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ OL)
6 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 4that.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 33594 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑇 ∈ (Base‘𝐾))
10 4that.j . . . . 5 = (join‘𝐾)
11 eqid 2610 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
126, 10, 11olj02 33531 . . . 4 ((𝐾 ∈ OL ∧ 𝑇 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑇) = 𝑇)
135, 9, 12syl2anc 691 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((0.‘𝐾) 𝑇) = 𝑇)
14 simp23 1089 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆 = (0.‘𝐾))
1514oveq1d 6564 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 𝑇) = ((0.‘𝐾) 𝑇))
1610, 7hlatjidm 33673 . . . 4 ((𝐾 ∈ HL ∧ 𝑇𝐴) → (𝑇 𝑇) = 𝑇)
173, 1, 16syl2anc 691 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑇 𝑇) = 𝑇)
1813, 15, 173eqtr4d 2654 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 𝑇) = (𝑇 𝑇))
19 breq1 4586 . . . . 5 (𝑧 = 𝑇 → (𝑧 𝑊𝑇 𝑊))
2019notbid 307 . . . 4 (𝑧 = 𝑇 → (¬ 𝑧 𝑊 ↔ ¬ 𝑇 𝑊))
21 oveq2 6557 . . . . 5 (𝑧 = 𝑇 → (𝑆 𝑧) = (𝑆 𝑇))
22 oveq2 6557 . . . . 5 (𝑧 = 𝑇 → (𝑇 𝑧) = (𝑇 𝑇))
2321, 22eqeq12d 2625 . . . 4 (𝑧 = 𝑇 → ((𝑆 𝑧) = (𝑇 𝑧) ↔ (𝑆 𝑇) = (𝑇 𝑇)))
2420, 23anbi12d 743 . . 3 (𝑧 = 𝑇 → ((¬ 𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)) ↔ (¬ 𝑇 𝑊 ∧ (𝑆 𝑇) = (𝑇 𝑇))))
2524rspcev 3282 . 2 ((𝑇𝐴 ∧ (¬ 𝑇 𝑊 ∧ (𝑆 𝑇) = (𝑇 𝑇))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
261, 2, 18, 25syl12anc 1316 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  0.cp0 16860  OLcol 33479  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  4atex2-0bOLDN  34383
 Copyright terms: Public domain W3C validator