Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4animp1 Structured version   Visualization version   GIF version

Theorem 4animp1 37724
 Description: A single hypothesis unification deduction with an assertion which is an implication with a 4-right-nested conjunction antecedent. (Contributed by Alan Sare, 30-May-2018.)
Hypothesis
Ref Expression
4animp1.1 ((𝜑𝜓𝜒) → (𝜏𝜃))
Assertion
Ref Expression
4animp1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 4animp1
StepHypRef Expression
1 simpr 476 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜃)
2 4animp1.1 . . 3 ((𝜑𝜓𝜒) → (𝜏𝜃))
32ad4ant123 1286 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → (𝜏𝜃))
41, 3mpbird 246 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033 This theorem is referenced by:  sineq0ALT  38195
 Copyright terms: Public domain W3C validator