Proof of Theorem 3v3e3cycl2
Step | Hyp | Ref
| Expression |
1 | | df-rex 2902 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) ↔ ∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) |
2 | | df-rex 2902 |
. . . . . 6
⊢
(∃𝑏 ∈
𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) ↔ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) |
3 | | df-rex 2902 |
. . . . . . . 8
⊢
(∃𝑐 ∈
𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) ↔ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) |
4 | 3 | anbi2i 726 |
. . . . . . 7
⊢ ((𝑏 ∈ 𝑉 ∧ ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ↔ (𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) |
5 | 4 | exbii 1764 |
. . . . . 6
⊢
(∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ↔ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) |
6 | 2, 5 | bitri 263 |
. . . . 5
⊢
(∃𝑏 ∈
𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) ↔ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) |
7 | 6 | anbi2i 726 |
. . . 4
⊢ ((𝑎 ∈ 𝑉 ∧ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ↔ (𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))) |
8 | 7 | exbii 1764 |
. . 3
⊢
(∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ↔ ∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))) |
9 | 1, 8 | bitri 263 |
. 2
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) ↔ ∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))) |
10 | | 19.41v 1901 |
. . . 4
⊢
(∃𝑎((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸) ↔ (∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸)) |
11 | | ancom 465 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ↔ (∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉)) |
12 | | 19.41v 1901 |
. . . . . . . . 9
⊢
(∃𝑏((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ↔ (∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉)) |
13 | 11, 12 | bitr4i 266 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ↔ ∃𝑏((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉)) |
14 | 13 | anbi1i 727 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸) ↔ (∃𝑏((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ∧ 𝑉 USGrph 𝐸)) |
15 | | 19.41v 1901 |
. . . . . . 7
⊢
(∃𝑏(((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ∧ 𝑉 USGrph 𝐸) ↔ (∃𝑏((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ∧ 𝑉 USGrph 𝐸)) |
16 | | anass 679 |
. . . . . . . . 9
⊢ ((((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ∧ 𝑉 USGrph 𝐸) ↔ ((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
17 | | ancom 465 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ↔ (∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉)) |
18 | | 19.41v 1901 |
. . . . . . . . . . . 12
⊢
(∃𝑐((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ↔ (∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉)) |
19 | 17, 18 | bitr4i 266 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ↔ ∃𝑐((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉)) |
20 | 19 | anbi1i 727 |
. . . . . . . . . 10
⊢ (((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) ↔ (∃𝑐((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
21 | | 19.41v 1901 |
. . . . . . . . . 10
⊢
(∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) ↔ (∃𝑐((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
22 | 20, 21 | bitr4i 266 |
. . . . . . . . 9
⊢ (((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) ↔ ∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
23 | 16, 22 | bitri 263 |
. . . . . . . 8
⊢ ((((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ∧ 𝑉 USGrph 𝐸) ↔ ∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
24 | 23 | exbii 1764 |
. . . . . . 7
⊢
(∃𝑏(((𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ∧ 𝑎 ∈ 𝑉) ∧ 𝑉 USGrph 𝐸) ↔ ∃𝑏∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
25 | 14, 15, 24 | 3bitr2i 287 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸) ↔ ∃𝑏∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
26 | 25 | exbii 1764 |
. . . . 5
⊢
(∃𝑎((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸) ↔ ∃𝑎∃𝑏∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸))) |
27 | | simprr 792 |
. . . . . . . . 9
⊢ ((((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → 𝑉 USGrph 𝐸) |
28 | | simprl 790 |
. . . . . . . . 9
⊢ ((((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → 𝑎 ∈ 𝑉) |
29 | | simplr 788 |
. . . . . . . . 9
⊢ ((((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → 𝑏 ∈ 𝑉) |
30 | | simplll 794 |
. . . . . . . . 9
⊢ ((((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → 𝑐 ∈ 𝑉) |
31 | | simplr 788 |
. . . . . . . . . 10
⊢ (((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) → ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) |
33 | | eqid 2610 |
. . . . . . . . . 10
⊢ {〈0,
(◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} = {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} |
34 | | eqid 2610 |
. . . . . . . . . 10
⊢
({〈0, 𝑎〉,
〈1, 𝑏〉} ∪
{〈2, 𝑐〉, 〈3,
𝑎〉}) = ({〈0,
𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) |
35 | 33, 34 | constr3cycl 26189 |
. . . . . . . . 9
⊢ ((𝑉 USGrph 𝐸 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) → ({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3)) |
36 | 27, 28, 29, 30, 32, 35 | syl131anc 1331 |
. . . . . . . 8
⊢ ((((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → ({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3)) |
37 | 36 | eximi 1752 |
. . . . . . 7
⊢
(∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → ∃𝑐({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3)) |
38 | 37 | 2eximi 1753 |
. . . . . 6
⊢
(∃𝑎∃𝑏∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → ∃𝑎∃𝑏∃𝑐({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3)) |
39 | | tpex 6855 |
. . . . . . . . 9
⊢ {〈0,
(◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} ∈ V |
40 | | prex 4836 |
. . . . . . . . . 10
⊢ {〈0,
𝑎〉, 〈1, 𝑏〉} ∈
V |
41 | | prex 4836 |
. . . . . . . . . 10
⊢ {〈2,
𝑐〉, 〈3, 𝑎〉} ∈
V |
42 | 40, 41 | unex 6854 |
. . . . . . . . 9
⊢
({〈0, 𝑎〉,
〈1, 𝑏〉} ∪
{〈2, 𝑐〉, 〈3,
𝑎〉}) ∈
V |
43 | | breq12 4588 |
. . . . . . . . . 10
⊢ ((𝑓 = {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} ∧ 𝑝 = ({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉})) → (𝑓(𝑉 Cycles 𝐸)𝑝 ↔ {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}))) |
44 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑓 = {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} → (#‘𝑓) = (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉})) |
45 | 44 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} → ((#‘𝑓) = 3 ↔ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3)) |
46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓 = {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} ∧ 𝑝 = ({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉})) → ((#‘𝑓) = 3 ↔ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3)) |
47 | 43, 46 | anbi12d 743 |
. . . . . . . . 9
⊢ ((𝑓 = {〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} ∧ 𝑝 = ({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉})) → ((𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3) ↔ ({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3))) |
48 | 39, 42, 47 | spc2ev 3274 |
. . . . . . . 8
⊢
(({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)) |
49 | 48 | exlimiv 1845 |
. . . . . . 7
⊢
(∃𝑐({〈0,
(◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)) |
50 | 49 | exlimivv 1847 |
. . . . . 6
⊢
(∃𝑎∃𝑏∃𝑐({〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉} (𝑉 Cycles 𝐸)({〈0, 𝑎〉, 〈1, 𝑏〉} ∪ {〈2, 𝑐〉, 〈3, 𝑎〉}) ∧ (#‘{〈0, (◡𝐸‘{𝑎, 𝑏})〉, 〈1, (◡𝐸‘{𝑏, 𝑐})〉, 〈2, (◡𝐸‘{𝑐, 𝑎})〉}) = 3) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)) |
51 | 38, 50 | syl 17 |
. . . . 5
⊢
(∃𝑎∃𝑏∃𝑐(((𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑉 USGrph 𝐸)) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)) |
52 | 26, 51 | sylbi 206 |
. . . 4
⊢
(∃𝑎((𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)) |
53 | 10, 52 | sylbir 224 |
. . 3
⊢
((∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) ∧ 𝑉 USGrph 𝐸) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)) |
54 | 53 | expcom 450 |
. 2
⊢ (𝑉 USGrph 𝐸 → (∃𝑎(𝑎 ∈ 𝑉 ∧ ∃𝑏(𝑏 ∈ 𝑉 ∧ ∃𝑐(𝑐 ∈ 𝑉 ∧ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3))) |
55 | 9, 54 | syl5bi 231 |
1
⊢ (𝑉 USGrph 𝐸 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) → ∃𝑓∃𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3))) |