MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3v3e3cycl1 Structured version   Visualization version   GIF version

Theorem 3v3e3cycl1 26172
Description: If there is a cycle of length 3 in a graph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Assertion
Ref Expression
3v3e3cycl1 ((Fun 𝐸𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎,𝑏,𝑐)

Proof of Theorem 3v3e3cycl1
Dummy variables 𝑘 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycliswlk 26160 . . . . 5 (𝐹(𝑉 Cycles 𝐸)𝑃𝐹(𝑉 Walks 𝐸)𝑃)
2 wlkbprop 26051 . . . . 5 (𝐹(𝑉 Walks 𝐸)𝑃 → ((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
31, 2syl 17 . . . 4 (𝐹(𝑉 Cycles 𝐸)𝑃 → ((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
4 iscycl 26153 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Cycles 𝐸)𝑃 ↔ (𝐹(𝑉 Paths 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
5 ispth 26098 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Paths 𝐸)𝑃 ↔ (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)))
6 istrl 26067 . . . . . . . . . 10 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Trails 𝐸)𝑃 ↔ ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
7 fzo0to3tp 12421 . . . . . . . . . . . . . . . . . . 19 (0..^3) = {0, 1, 2}
87raleqi 3119 . . . . . . . . . . . . . . . . . 18 (∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1, 2} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
9 0z 11265 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
10 1z 11284 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
11 2z 11286 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
12 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
1312fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘0)))
14 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
15 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
16 0p1e1 11009 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 + 1) = 1
1715, 16syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 0 → (𝑘 + 1) = 1)
1817fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1914, 18preq12d 4220 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
2013, 19eqeq12d 2625 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 0 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
21 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2221fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 1 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘1)))
23 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
24 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
25 1p1e2 11011 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 + 1) = 2
2624, 25syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 1 → (𝑘 + 1) = 2)
2726fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
2823, 27preq12d 4220 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
2922, 28eqeq12d 2625 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 1 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
30 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
3130fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 2 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘2)))
32 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
33 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
34 2p1e3 11028 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 + 1) = 3
3533, 34syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 2 → (𝑘 + 1) = 3)
3635fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
3732, 36preq12d 4220 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 2 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)})
3831, 37eqeq12d 2625 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 2 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}))
3920, 29, 38raltpg 4183 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) → (∀𝑘 ∈ {0, 1, 2} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)})))
409, 10, 11, 39mp3an 1416 . . . . . . . . . . . . . . . . . 18 (∀𝑘 ∈ {0, 1, 2} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}))
418, 40bitri 263 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}))
42 preq2 4213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
4342eqcoms 2618 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
4443eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ↔ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)}))
45443anbi3d 1397 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) = (𝑃‘3) → (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}) ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)})))
46 3pos 10991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 3
47 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐹) = 3 → (0 < (#‘𝐹) ↔ 0 < 3))
4846, 47mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝐹) = 3 → 0 < (#‘𝐹))
49 0nn0 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℕ0
5048, 49jctil 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝐹) = 3 → (0 ∈ ℕ0 ∧ 0 < (#‘𝐹)))
51 nvnencycllem 26171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (0 ∈ ℕ0 ∧ 0 < (#‘𝐹))) → ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → {(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸))
5250, 51sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 3) → ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → {(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸))
53 1lt3 11073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1 < 3
54 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐹) = 3 → (1 < (#‘𝐹) ↔ 1 < 3))
5553, 54mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝐹) = 3 → 1 < (#‘𝐹))
56 1nn0 11185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℕ0
5755, 56jctil 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝐹) = 3 → (1 ∈ ℕ0 ∧ 1 < (#‘𝐹)))
58 nvnencycllem 26171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (1 ∈ ℕ0 ∧ 1 < (#‘𝐹))) → ((𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸))
5957, 58sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 3) → ((𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸))
60 2lt3 11072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 < 3
61 breq2 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐹) = 3 → (2 < (#‘𝐹) ↔ 2 < 3))
6260, 61mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝐹) = 3 → 2 < (#‘𝐹))
63 2nn0 11186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ0
6462, 63jctil 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝐹) = 3 → (2 ∈ ℕ0 ∧ 2 < (#‘𝐹)))
65 nvnencycllem 26171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (2 ∈ ℕ0 ∧ 2 < (#‘𝐹))) → ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)} → {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸))
6664, 65sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 3) → ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)} → {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸))
6752, 59, 663anim123d 1398 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 3) → (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)}) → ({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸)))
6867adantlrr 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((Fun 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹)) ∧ (#‘𝐹) = 3) → (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)}) → ({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸)))
6968imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((Fun 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹)) ∧ (#‘𝐹) = 3) ∧ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)})) → ({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸))
70 3z 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ∈ ℤ
71 uzid 11578 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 ∈ ℤ → 3 ∈ (ℤ‘3))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 ∈ (ℤ‘3)
73 4fvwrd4 12328 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((3 ∈ (ℤ‘3) ∧ 𝑃:(0...3)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
7472, 73mpan 702 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃:(0...3)⟶𝑉 → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
75 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) → (𝑃‘2) = 𝑐)
7675anim2i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (𝑃‘2) = 𝑐))
77 df-3an 1033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (𝑃‘2) = 𝑐))
7876, 77sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐))
7978rexlimivw 3011 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐))
8079reximi 2994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐))
8180reximi 2994 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑏𝑉𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐))
8281reximi 2994 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐))
8374, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃:(0...3)⟶𝑉 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐))
84 preq12 4214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) → {(𝑃‘0), (𝑃‘1)} = {𝑎, 𝑏})
85843adant3 1074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → {(𝑃‘0), (𝑃‘1)} = {𝑎, 𝑏})
8685eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ↔ {𝑎, 𝑏} ∈ ran 𝐸))
87 preq12 4214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → {(𝑃‘1), (𝑃‘2)} = {𝑏, 𝑐})
88873adant1 1072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → {(𝑃‘1), (𝑃‘2)} = {𝑏, 𝑐})
8988eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ({(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ↔ {𝑏, 𝑐} ∈ ran 𝐸))
90 preq12 4214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑃‘2) = 𝑐 ∧ (𝑃‘0) = 𝑎) → {(𝑃‘2), (𝑃‘0)} = {𝑐, 𝑎})
9190ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑃‘0) = 𝑎 ∧ (𝑃‘2) = 𝑐) → {(𝑃‘2), (𝑃‘0)} = {𝑐, 𝑎})
92913adant2 1073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → {(𝑃‘2), (𝑃‘0)} = {𝑐, 𝑎})
9392eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ({(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸 ↔ {𝑐, 𝑎} ∈ ran 𝐸))
9486, 89, 933anbi123d 1391 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸) ↔ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
9594biimpcd 238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸) → (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
9695reximdv 2999 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸) → (∃𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ∃𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
9796reximdv 2999 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸) → (∃𝑏𝑉𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
9897reximdv 2999 . . . . . . . . . . . . . . . . . . . . . . . 24 (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ ran 𝐸) → (∃𝑎𝑉𝑏𝑉𝑐𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏 ∧ (𝑃‘2) = 𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
9969, 83, 98syl2im 39 . . . . . . . . . . . . . . . . . . . . . . 23 ((((Fun 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹)) ∧ (#‘𝐹) = 3) ∧ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)})) → (𝑃:(0...3)⟶𝑉 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
10099exp41 636 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐸 → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → ((#‘𝐹) = 3 → (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)}) → (𝑃:(0...3)⟶𝑉 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))))
101100com14 94 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)}) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → ((#‘𝐹) = 3 → (Fun 𝐸 → (𝑃:(0...3)⟶𝑉 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))))
102101com35 96 . . . . . . . . . . . . . . . . . . . 20 (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘0)}) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → (𝑃:(0...3)⟶𝑉 → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))))
10345, 102syl6bi 242 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) = (𝑃‘3) → (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → (𝑃:(0...3)⟶𝑉 → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))))
104103com12 32 . . . . . . . . . . . . . . . . . 18 (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}) → ((𝑃‘0) = (𝑃‘3) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → (𝑃:(0...3)⟶𝑉 → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))))
105104com24 93 . . . . . . . . . . . . . . . . 17 (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ∧ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)}) → (𝑃:(0...3)⟶𝑉 → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → ((𝑃‘0) = (𝑃‘3) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))))
10641, 105sylbi 206 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...3)⟶𝑉 → ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → ((𝑃‘0) = (𝑃‘3) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))))
107106com13 86 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) → (𝑃:(0...3)⟶𝑉 → (∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → ((𝑃‘0) = (𝑃‘3) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))))
1081073imp 1249 . . . . . . . . . . . . . 14 (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...3)⟶𝑉 ∧ ∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ((𝑃‘0) = (𝑃‘3) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
109108com14 94 . . . . . . . . . . . . 13 ((#‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘3) → (Fun 𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...3)⟶𝑉 ∧ ∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
110 fveq2 6103 . . . . . . . . . . . . . 14 ((#‘𝐹) = 3 → (𝑃‘(#‘𝐹)) = (𝑃‘3))
111110eqeq2d 2620 . . . . . . . . . . . . 13 ((#‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
112 oveq2 6557 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 3 → (0...(#‘𝐹)) = (0...3))
113112feq2d 5944 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 3 → (𝑃:(0...(#‘𝐹))⟶𝑉𝑃:(0...3)⟶𝑉))
114 oveq2 6557 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 3 → (0..^(#‘𝐹)) = (0..^3))
115114raleqdv 3121 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 3 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
116113, 1153anbi23d 1394 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 3 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...3)⟶𝑉 ∧ ∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
117116imbi1d 330 . . . . . . . . . . . . . 14 ((#‘𝐹) = 3 → ((((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)) ↔ (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...3)⟶𝑉 ∧ ∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
118117imbi2d 329 . . . . . . . . . . . . 13 ((#‘𝐹) = 3 → ((Fun 𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))) ↔ (Fun 𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...3)⟶𝑉 ∧ ∀𝑘 ∈ (0..^3)(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
119109, 111, 1183imtr4d 282 . . . . . . . . . . . 12 ((#‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
120119com14 94 . . . . . . . . . . 11 (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1211202a1d 26 . . . . . . . . . 10 (((𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun (𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))))
1226, 121syl6bi 242 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Trails 𝐸)𝑃 → (Fun (𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))))))
1231223impd 1273 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun (𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))))
1245, 123sylbid 229 . . . . . . 7 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Paths 𝐸)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))))
125124impd 446 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝑉 Paths 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1264, 125sylbid 229 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Cycles 𝐸)𝑃 → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1271263adant1 1072 . . . 4 (((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Cycles 𝐸)𝑃 → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1283, 127mpcom 37 . . 3 (𝐹(𝑉 Cycles 𝐸)𝑃 → (Fun 𝐸 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
129128com12 32 . 2 (Fun 𝐸 → (𝐹(𝑉 Cycles 𝐸)𝑃 → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
1301293imp 1249 1 ((Fun 𝐸𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  c0 3874  {cpr 4127  {ctp 4129   class class class wbr 4583  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   Walks cwalk 26026   Trails ctrail 26027   Paths cpath 26028   Cycles ccycl 26035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-trail 26037  df-pth 26038  df-cycl 26041
This theorem is referenced by:  3v3e3cycl  26193
  Copyright terms: Public domain W3C validator