Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3o1cs Structured version   Visualization version   GIF version

Theorem 3o1cs 28693
Description: Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.)
Hypothesis
Ref Expression
3o1cs.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3o1cs (𝜑𝜃)

Proof of Theorem 3o1cs
StepHypRef Expression
1 df-3or 1032 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 3o1cs.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
31, 2sylbir 224 . . 3 (((𝜑𝜓) ∨ 𝜒) → 𝜃)
43orcs 408 . 2 ((𝜑𝜓) → 𝜃)
54orcs 408 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  w3o 1030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384  df-3or 1032
This theorem is referenced by:  xrpxdivcld  28974
  Copyright terms: Public domain W3C validator