Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3jaao | Structured version Visualization version GIF version |
Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3jaao.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaao.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
3jaao.3 | ⊢ (𝜂 → (𝜁 → 𝜒)) |
Ref | Expression |
---|---|
3jaao | ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaao.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | 3ad2ant1 1075 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 → 𝜒)) |
3 | 3jaao.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
4 | 3 | 3ad2ant2 1076 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜏 → 𝜒)) |
5 | 3jaao.3 | . . 3 ⊢ (𝜂 → (𝜁 → 𝜒)) | |
6 | 5 | 3ad2ant3 1077 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜁 → 𝜒)) |
7 | 2, 4, 6 | 3jaod 1384 | 1 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1030 ∧ w3a 1031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 |
This theorem is referenced by: lpni 26722 3ornot23 37736 |
Copyright terms: Public domain | W3C validator |