Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp21 Structured version   Visualization version   GIF version

Theorem 3imp21 1269
 Description: The importation inference 3imp 1249 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.)
Hypothesis
Ref Expression
3imp21.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
3imp21 ((𝜓𝜑𝜒) → 𝜃)

Proof of Theorem 3imp21
StepHypRef Expression
1 3imp21.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
213imp 1249 . 2 ((𝜑𝜓𝜒) → 𝜃)
323com12 1261 1 ((𝜓𝜑𝜒) → 𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033 This theorem is referenced by:  sotri3  5445  gausslemma2dlem1a  24890  ax6e2ndeqALT  38189  fmtnofac2  40019  upgrewlkle2  40808  pthdivtx  40935  clwlksfclwwlk  41269  upgr3v3e3cycl  41347  upgr4cycl4dv4e  41352  av-extwwlkfablem2  41510  av-numclwwlkovf2ex  41517  av-frgraregord013  41549
 Copyright terms: Public domain W3C validator