Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgrarn Structured version   Visualization version   GIF version

Theorem 3cyclfrgrarn 26540
 Description: Every vertex in a friendship graph ( with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.)
Assertion
Ref Expression
3cyclfrgrarn ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐

Proof of Theorem 3cyclfrgrarn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frisusgra 26519 . . . 4 (𝑉 FriendGrph 𝐸𝑉 USGrph 𝐸)
2 usgrav 25867 . . . 4 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
31, 2syl 17 . . 3 (𝑉 FriendGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
4 hashgt12el2 13071 . . . . . . . . . . . . . 14 ((𝑉 ∈ V ∧ 1 < (#‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
543expa 1257 . . . . . . . . . . . . 13 (((𝑉 ∈ V ∧ 1 < (#‘𝑉)) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
6 3cyclfrgrarn1 26539 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 FriendGrph 𝐸 ∧ (𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
763expb 1258 . . . . . . . . . . . . . . . . . . 19 ((𝑉 FriendGrph 𝐸 ∧ ((𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥)) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
87expcom 450 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥) → (𝑉 FriendGrph 𝐸 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
98ex 449 . . . . . . . . . . . . . . . . 17 ((𝑎𝑉𝑥𝑉) → (𝑎𝑥 → (𝑉 FriendGrph 𝐸 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
109expcom 450 . . . . . . . . . . . . . . . 16 (𝑥𝑉 → (𝑎𝑉 → (𝑎𝑥 → (𝑉 FriendGrph 𝐸 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1110com23 84 . . . . . . . . . . . . . . 15 (𝑥𝑉 → (𝑎𝑥 → (𝑎𝑉 → (𝑉 FriendGrph 𝐸 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1211com34 89 . . . . . . . . . . . . . 14 (𝑥𝑉 → (𝑎𝑥 → (𝑉 FriendGrph 𝐸 → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1312rexlimiv 3009 . . . . . . . . . . . . 13 (∃𝑥𝑉 𝑎𝑥 → (𝑉 FriendGrph 𝐸 → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
145, 13syl 17 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ 1 < (#‘𝑉)) ∧ 𝑎𝑉) → (𝑉 FriendGrph 𝐸 → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
1514expcom 450 . . . . . . . . . . 11 (𝑎𝑉 → ((𝑉 ∈ V ∧ 1 < (#‘𝑉)) → (𝑉 FriendGrph 𝐸 → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1615com24 93 . . . . . . . . . 10 (𝑎𝑉 → (𝑎𝑉 → (𝑉 FriendGrph 𝐸 → ((𝑉 ∈ V ∧ 1 < (#‘𝑉)) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))))
1716pm2.43i 50 . . . . . . . . 9 (𝑎𝑉 → (𝑉 FriendGrph 𝐸 → ((𝑉 ∈ V ∧ 1 < (#‘𝑉)) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
1817com13 86 . . . . . . . 8 ((𝑉 ∈ V ∧ 1 < (#‘𝑉)) → (𝑉 FriendGrph 𝐸 → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
1918imp 444 . . . . . . 7 (((𝑉 ∈ V ∧ 1 < (#‘𝑉)) ∧ 𝑉 FriendGrph 𝐸) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
2019ralrimiv 2948 . . . . . 6 (((𝑉 ∈ V ∧ 1 < (#‘𝑉)) ∧ 𝑉 FriendGrph 𝐸) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
2120exp31 628 . . . . 5 (𝑉 ∈ V → (1 < (#‘𝑉) → (𝑉 FriendGrph 𝐸 → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
2221com23 84 . . . 4 (𝑉 ∈ V → (𝑉 FriendGrph 𝐸 → (1 < (#‘𝑉) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
2322adantr 480 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 FriendGrph 𝐸 → (1 < (#‘𝑉) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))))
243, 23mpcom 37 . 2 (𝑉 FriendGrph 𝐸 → (1 < (#‘𝑉) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
2524imp 444 1 ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173  {cpr 4127   class class class wbr 4583  ran crn 5039  ‘cfv 5804  1c1 9816   < clt 9953  #chash 12979   USGrph cusg 25859   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-usgra 25862  df-frgra 26516 This theorem is referenced by:  3cyclfrgrarn2  26541  3cyclfrgra  26542  vdn0frgrav2  26550  vdgn0frgrav2  26551
 Copyright terms: Public domain W3C validator