Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgra Structured version   Visualization version   GIF version

Theorem 3cyclfrgra 26542
 Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.)
Assertion
Ref Expression
3cyclfrgra ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
Distinct variable groups:   𝑣,𝐸,𝑓,𝑝   𝑣,𝑉,𝑓,𝑝

Proof of Theorem 3cyclfrgra
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cyclfrgrarn 26540 . 2 ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) → ∀𝑣𝑉𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸))
2 frisusgra 26519 . . . . . . 7 (𝑉 FriendGrph 𝐸𝑉 USGrph 𝐸)
32ad4antr 764 . . . . . 6 (((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸)) → 𝑉 USGrph 𝐸)
4 simpr 476 . . . . . . . . 9 (((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) → 𝑣𝑉)
54adantr 480 . . . . . . . 8 ((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑣𝑉)
6 simprl 790 . . . . . . . 8 ((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑏𝑉)
7 simprr 792 . . . . . . . 8 ((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → 𝑐𝑉)
85, 6, 73jca 1235 . . . . . . 7 ((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑣𝑉𝑏𝑉𝑐𝑉))
98adantr 480 . . . . . 6 (((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸)) → (𝑣𝑉𝑏𝑉𝑐𝑉))
10 simpr 476 . . . . . 6 (((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸)) → ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸))
11 constr3cyclpe 26191 . . . . . 6 ((𝑉 USGrph 𝐸 ∧ (𝑣𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸)) → ∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
123, 9, 10, 11syl3anc 1318 . . . . 5 (((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸)) → ∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
1312ex 449 . . . 4 ((((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
1413rexlimdvva 3020 . . 3 (((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) ∧ 𝑣𝑉) → (∃𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
1514ralimdva 2945 . 2 ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) → (∀𝑣𝑉𝑏𝑉𝑐𝑉 ({𝑣, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑣} ∈ ran 𝐸) → ∀𝑣𝑉𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)))
161, 15mpd 15 1 ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {cpr 4127   class class class wbr 4583  ran crn 5039  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   < clt 9953  3c3 10948  #chash 12979   USGrph cusg 25859   Cycles ccycl 26035   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-trail 26037  df-pth 26038  df-cycl 26041  df-frgra 26516 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator