Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anor | Structured version Visualization version GIF version |
Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) |
Ref | Expression |
---|---|
3anor | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1033 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | anor 509 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) | |
3 | ianor 508 | . . . . 5 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
4 | 3 | orbi1i 541 | . . . 4 ⊢ ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
5 | 2, 4 | xchbinx 323 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
6 | df-3or 1032 | . . 3 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) | |
7 | 5, 6 | xchbinxr 324 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
8 | 1, 7 | bitri 263 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∨ w3o 1030 ∧ w3a 1031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 |
This theorem is referenced by: 3ianor 1048 ne3anior 2875 |
Copyright terms: Public domain | W3C validator |