Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  31wlkdlem9 Structured version   Visualization version   GIF version

Theorem 31wlkdlem9 41335
 Description: Lemma 9 for 31wlkd 41337. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
31wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
31wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
31wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
31wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
31wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
31wlkdlem9 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))

Proof of Theorem 31wlkdlem9
StepHypRef Expression
1 31wlkd.e . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
2 31wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3 31wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
4 31wlkd.s . . . 4 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
5 31wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
62, 3, 4, 5, 131wlkdlem8 41334 . . 3 (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿))
7 fveq2 6103 . . . . . 6 ((𝐹‘0) = 𝐽 → (𝐼‘(𝐹‘0)) = (𝐼𝐽))
87sseq2d 3596 . . . . 5 ((𝐹‘0) = 𝐽 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
983ad2ant1 1075 . . . 4 (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿) → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
10 fveq2 6103 . . . . . 6 ((𝐹‘1) = 𝐾 → (𝐼‘(𝐹‘1)) = (𝐼𝐾))
1110sseq2d 3596 . . . . 5 ((𝐹‘1) = 𝐾 → ({𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
12113ad2ant2 1076 . . . 4 (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿) → ({𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
13 fveq2 6103 . . . . . 6 ((𝐹‘2) = 𝐿 → (𝐼‘(𝐹‘2)) = (𝐼𝐿))
1413sseq2d 3596 . . . . 5 ((𝐹‘2) = 𝐿 → ({𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
15143ad2ant3 1077 . . . 4 (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿) → ({𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
169, 12, 153anbi123d 1391 . . 3 (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾 ∧ (𝐹‘2) = 𝐿) → (({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
176, 16syl 17 . 2 (𝜑 → (({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
181, 17mpbird 246 1 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ⊆ wss 3540  {cpr 4127  ‘cfv 5804  0cc0 9815  1c1 9816  2c2 10947  ⟨“cs3 13438  ⟨“cs4 13439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446 This theorem is referenced by:  31wlkdlem10  41336
 Copyright terms: Public domain W3C validator