Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2trllemF | Structured version Visualization version GIF version |
Description: Lemma 5 for constr2trl 26129. (Contributed by Alexander van der Vekens, 31-Jan-2018.) |
Ref | Expression |
---|---|
2trllemF | ⊢ (((𝐸‘𝐼) = {𝑋, 𝑌} ∧ 𝑌 ∈ 𝑉) → 𝐼 ∈ dom 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2g 4240 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → 𝑌 ∈ {𝑋, 𝑌}) | |
2 | eleq2 2677 | . . . 4 ⊢ ((𝐸‘𝐼) = {𝑋, 𝑌} → (𝑌 ∈ (𝐸‘𝐼) ↔ 𝑌 ∈ {𝑋, 𝑌})) | |
3 | 1, 2 | syl5ibr 235 | . . 3 ⊢ ((𝐸‘𝐼) = {𝑋, 𝑌} → (𝑌 ∈ 𝑉 → 𝑌 ∈ (𝐸‘𝐼))) |
4 | 3 | imp 444 | . 2 ⊢ (((𝐸‘𝐼) = {𝑋, 𝑌} ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝐸‘𝐼)) |
5 | elfvdm 6130 | . 2 ⊢ (𝑌 ∈ (𝐸‘𝐼) → 𝐼 ∈ dom 𝐸) | |
6 | 4, 5 | syl 17 | 1 ⊢ (((𝐸‘𝐼) = {𝑋, 𝑌} ∧ 𝑌 ∈ 𝑉) → 𝐼 ∈ dom 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cpr 4127 dom cdm 5038 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 ax-pow 4769 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-dm 5048 df-iota 5768 df-fv 5812 |
This theorem is referenced by: 2trllemH 26082 2trllemE 26083 |
Copyright terms: Public domain | W3C validator |