MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2spot0 Structured version   Visualization version   GIF version

Theorem 2spot0 26591
Description: If there are no vertices, then there are no paths (of length 2), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
Assertion
Ref Expression
2spot0 ((𝑉 = ∅ ∧ 𝐸𝑋) → (𝑉 2SPathsOt 𝐸) = ∅)

Proof of Theorem 2spot0
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4718 . . . 4 ∅ ∈ V
2 eleq1 2676 . . . 4 (𝑉 = ∅ → (𝑉 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 247 . . 3 (𝑉 = ∅ → 𝑉 ∈ V)
4 2spthsot 26395 . . 3 ((𝑉 ∈ V ∧ 𝐸𝑋) → (𝑉 2SPathsOt 𝐸) = {𝑝 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏)})
53, 4sylan 487 . 2 ((𝑉 = ∅ ∧ 𝐸𝑋) → (𝑉 2SPathsOt 𝐸) = {𝑝 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏)})
6 2spthonot3v 26403 . . . . . . . . 9 (𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑎𝑉𝑏𝑉) ∧ 𝑝 ∈ ((𝑉 × 𝑉) × 𝑉)))
7 n0i 3879 . . . . . . . . . . 11 (𝑎𝑉 → ¬ 𝑉 = ∅)
87adantr 480 . . . . . . . . . 10 ((𝑎𝑉𝑏𝑉) → ¬ 𝑉 = ∅)
983ad2ant2 1076 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑎𝑉𝑏𝑉) ∧ 𝑝 ∈ ((𝑉 × 𝑉) × 𝑉)) → ¬ 𝑉 = ∅)
106, 9syl 17 . . . . . . . 8 (𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏) → ¬ 𝑉 = ∅)
1110con2i 133 . . . . . . 7 (𝑉 = ∅ → ¬ 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏))
1211ad4antr 764 . . . . . 6 (((((𝑉 = ∅ ∧ 𝐸𝑋) ∧ 𝑝 ∈ ((𝑉 × 𝑉) × 𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → ¬ 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏))
1312nrexdv 2984 . . . . 5 ((((𝑉 = ∅ ∧ 𝐸𝑋) ∧ 𝑝 ∈ ((𝑉 × 𝑉) × 𝑉)) ∧ 𝑎𝑉) → ¬ ∃𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏))
1413nrexdv 2984 . . . 4 (((𝑉 = ∅ ∧ 𝐸𝑋) ∧ 𝑝 ∈ ((𝑉 × 𝑉) × 𝑉)) → ¬ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏))
1514ralrimiva 2949 . . 3 ((𝑉 = ∅ ∧ 𝐸𝑋) → ∀𝑝 ∈ ((𝑉 × 𝑉) × 𝑉) ¬ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏))
16 rabeq0 3911 . . 3 ({𝑝 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏)} = ∅ ↔ ∀𝑝 ∈ ((𝑉 × 𝑉) × 𝑉) ¬ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏))
1715, 16sylibr 223 . 2 ((𝑉 = ∅ ∧ 𝐸𝑋) → {𝑝 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 ∈ (𝑎(𝑉 2SPathOnOt 𝐸)𝑏)} = ∅)
185, 17eqtrd 2644 1 ((𝑉 = ∅ ∧ 𝐸𝑋) → (𝑉 2SPathsOt 𝐸) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  c0 3874   × cxp 5036  (class class class)co 6549   2SPathsOt c2spthot 26383   2SPathOnOt c2pthonot 26384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-2spthonot 26387  df-2spthsot 26388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator