Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sb5rf | Structured version Visualization version GIF version |
Description: Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove distinct variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) |
Ref | Expression |
---|---|
2sb5rf.1 | ⊢ Ⅎ𝑧𝜑 |
2sb5rf.2 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
2sb5rf | ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sb5rf.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
2 | 1 | 19.41 2090 | . . . 4 ⊢ (∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ (∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
3 | 2 | exbii 1764 | . . 3 ⊢ (∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ ∃𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
4 | 2sb5rf.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
5 | 4 | 19.41 2090 | . . 3 ⊢ (∃𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
6 | 3, 5 | bitri 263 | . 2 ⊢ (∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
7 | sbequ12r 2098 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)) | |
8 | sbequ12r 2098 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜑 ↔ 𝜑)) | |
9 | 7, 8 | sylan9bb 732 | . . . 4 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜑)) |
10 | 9 | pm5.32i 667 | . . 3 ⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
11 | 10 | 2exbii 1765 | . 2 ⊢ (∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
12 | 2ax6e 2438 | . . 3 ⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | |
13 | 12 | biantrur 526 | . 2 ⊢ (𝜑 ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
14 | 6, 11, 13 | 3bitr4ri 292 | 1 ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∃wex 1695 Ⅎwnf 1699 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: sbel2x 2447 |
Copyright terms: Public domain | W3C validator |