Proof of Theorem 2rexrsb
Step | Hyp | Ref
| Expression |
1 | | rexrsb 39818 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ∃𝑤 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) |
2 | 1 | rexbii 3023 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) |
3 | | rexcom 3080 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑤 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑤 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) |
4 | 2, 3 | bitri 263 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑤 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) |
5 | | rexrsb 39818 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑))) |
6 | | impexp 461 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) |
7 | 6 | ralbii 2963 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦 ∈ 𝐵 (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) |
8 | | r19.21v 2943 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑))) |
9 | 7, 8 | bitr2i 264 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
10 | 9 | ralbii 2963 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
11 | 10 | rexbii 3023 |
. . . . 5
⊢
(∃𝑧 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑)) ↔ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
12 | 5, 11 | bitri 263 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
13 | 12 | rexbii 3023 |
. . 3
⊢
(∃𝑤 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
14 | | rexcom 3080 |
. . 3
⊢
(∃𝑤 ∈
𝐵 ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
15 | 13, 14 | bitri 263 |
. 2
⊢
(∃𝑤 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑦 = 𝑤 → 𝜑) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
16 | 4, 15 | bitri 263 |
1
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |