MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reuswap Structured version   Visualization version   GIF version

Theorem 2reuswap 3377
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
2reuswap (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem 2reuswap
StepHypRef Expression
1 df-rmo 2904 . . 3 (∃*𝑦𝐵 𝜑 ↔ ∃*𝑦(𝑦𝐵𝜑))
21ralbii 2963 . 2 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑))
3 df-ral 2901 . . . 4 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
4 moanimv 2519 . . . . 5 (∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
54albii 1737 . . . 4 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
63, 5bitr4i 266 . . 3 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
7 2euswap 2536 . . . 4 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃!𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃!𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑))))
8 df-reu 2903 . . . . 5 (∃!𝑥𝐴𝑦𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
9 r19.42v 3073 . . . . . . . 8 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
10 df-rex 2902 . . . . . . . 8 (∃𝑦𝐵 (𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)))
119, 10bitr3i 265 . . . . . . 7 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)))
12 an12 834 . . . . . . . 8 ((𝑦𝐵 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1312exbii 1764 . . . . . . 7 (∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝜑)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1411, 13bitri 263 . . . . . 6 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
1514eubii 2480 . . . . 5 (∃!𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
168, 15bitri 263 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 ↔ ∃!𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
17 df-reu 2903 . . . . 5 (∃!𝑦𝐵𝑥𝐴 𝜑 ↔ ∃!𝑦(𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
18 r19.42v 3073 . . . . . . 7 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
19 df-rex 2902 . . . . . . 7 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2018, 19bitr3i 265 . . . . . 6 ((𝑦𝐵 ∧ ∃𝑥𝐴 𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2120eubii 2480 . . . . 5 (∃!𝑦(𝑦𝐵 ∧ ∃𝑥𝐴 𝜑) ↔ ∃!𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
2217, 21bitri 263 . . . 4 (∃!𝑦𝐵𝑥𝐴 𝜑 ↔ ∃!𝑦𝑥(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
237, 16, 223imtr4g 284 . . 3 (∀𝑥∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
246, 23sylbi 206 . 2 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
252, 24sylbi 206 1 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑦𝐵𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473  wex 1695  wcel 1977  ∃!weu 2458  ∃*wmo 2459  wral 2896  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904
This theorem is referenced by:  reuxfr2d  4817  reuxfr3d  28713
  Copyright terms: Public domain W3C validator