MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem1 Structured version   Visualization version   GIF version

Theorem 2reu5lem1 3380
Description: Lemma for 2reu5 3383. Note that ∃!𝑥𝐴∃!𝑦𝐵𝜑 does not mean "there is exactly one 𝑥 in 𝐴 and exactly one 𝑦 in 𝐵 such that 𝜑 holds;" see comment for 2eu5 2545. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem1 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reu5lem1
StepHypRef Expression
1 df-reu 2903 . . 3 (∃!𝑦𝐵 𝜑 ↔ ∃!𝑦(𝑦𝐵𝜑))
21reubii 3105 . 2 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥𝐴 ∃!𝑦(𝑦𝐵𝜑))
3 df-reu 2903 . . 3 (∃!𝑥𝐴 ∃!𝑦(𝑦𝐵𝜑) ↔ ∃!𝑥(𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)))
4 euanv 2522 . . . . . 6 (∃!𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)))
54bicomi 213 . . . . 5 ((𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)) ↔ ∃!𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
6 3anass 1035 . . . . . . 7 ((𝑥𝐴𝑦𝐵𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
76bicomi 213 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴𝑦𝐵𝜑))
87eubii 2480 . . . . 5 (∃!𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
95, 8bitri 263 . . . 4 ((𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)) ↔ ∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
109eubii 2480 . . 3 (∃!𝑥(𝑥𝐴 ∧ ∃!𝑦(𝑦𝐵𝜑)) ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
113, 10bitri 263 . 2 (∃!𝑥𝐴 ∃!𝑦(𝑦𝐵𝜑) ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
122, 11bitri 263 1 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥∃!𝑦(𝑥𝐴𝑦𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031  wcel 1977  ∃!weu 2458  ∃!wreu 2898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-reu 2903
This theorem is referenced by:  2reu5lem3  3382
  Copyright terms: Public domain W3C validator