MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwne Structured version   Visualization version   GIF version

Theorem 2pwne 8001
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.)
Assertion
Ref Expression
2pwne (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwne
StepHypRef Expression
1 sdomirr 7982 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 canth2g 7999 . . . . 5 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
3 pwexg 4776 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
4 canth2g 7999 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
53, 4syl 17 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
6 sdomtr 7983 . . . . 5 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
72, 5, 6syl2anc 691 . . . 4 (𝐴𝑉𝐴 ≺ 𝒫 𝒫 𝐴)
8 breq1 4586 . . . 4 (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴𝐴 ≺ 𝒫 𝒫 𝐴))
97, 8syl5ibrcom 236 . . 3 (𝐴𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
101, 9mtoi 189 . 2 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴)
1110neqned 2789 1 (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator