MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   GIF version

Theorem 2pthon3v 26134
Description: For a vertex adjacent to two other vertices there is a path of length 2 between these other vertices. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
2pthon3v ((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(𝑉 PathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐸,𝑝   𝑓,𝑉,𝑝
Allowed substitution hints:   𝑋(𝑓,𝑝)   𝑌(𝑓,𝑝)

Proof of Theorem 2pthon3v
StepHypRef Expression
1 prex 4836 . . 3 {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} ∈ V
2 tpex 6855 . . 3 {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} ∈ V
31, 2pm3.2i 470 . 2 ({⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} ∈ V ∧ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} ∈ V)
4 fvex 6113 . . . . 5 (𝐸‘{𝐴, 𝐵}) ∈ V
5 fvex 6113 . . . . 5 (𝐸‘{𝐵, 𝐶}) ∈ V
64, 5pm3.2i 470 . . . 4 ((𝐸‘{𝐴, 𝐵}) ∈ V ∧ (𝐸‘{𝐵, 𝐶}) ∈ V)
7 2pthoncl 26133 . . . 4 ((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ((𝐸‘{𝐴, 𝐵}) ∈ V ∧ (𝐸‘{𝐵, 𝐶}) ∈ V) ∧ ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) → {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
86, 7mp3an2 1404 . . 3 ((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) → {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
9 ax-1ne0 9884 . . . . . 6 1 ≠ 0
109nesymi 2839 . . . . 5 ¬ 0 = 1
11 c0ex 9913 . . . . . . 7 0 ∈ V
1211, 4opth1 4870 . . . . . 6 (⟨0, (𝐸‘{𝐴, 𝐵})⟩ = ⟨1, (𝐸‘{𝐵, 𝐶})⟩ → 0 = 1)
1312necon3bi 2808 . . . . 5 (¬ 0 = 1 → ⟨0, (𝐸‘{𝐴, 𝐵})⟩ ≠ ⟨1, (𝐸‘{𝐵, 𝐶})⟩)
1410, 13ax-mp 5 . . . 4 ⟨0, (𝐸‘{𝐴, 𝐵})⟩ ≠ ⟨1, (𝐸‘{𝐵, 𝐶})⟩
15 opex 4859 . . . . 5 ⟨0, (𝐸‘{𝐴, 𝐵})⟩ ∈ V
16 opex 4859 . . . . 5 ⟨1, (𝐸‘{𝐵, 𝐶})⟩ ∈ V
17 hashprgOLD 13044 . . . . 5 ((⟨0, (𝐸‘{𝐴, 𝐵})⟩ ∈ V ∧ ⟨1, (𝐸‘{𝐵, 𝐶})⟩ ∈ V) → (⟨0, (𝐸‘{𝐴, 𝐵})⟩ ≠ ⟨1, (𝐸‘{𝐵, 𝐶})⟩ ↔ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2))
1815, 16, 17mp2an 704 . . . 4 (⟨0, (𝐸‘{𝐴, 𝐵})⟩ ≠ ⟨1, (𝐸‘{𝐵, 𝐶})⟩ ↔ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2)
1914, 18mpbi 219 . . 3 (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2
208, 19jctir 559 . 2 ((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) → ({⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} ∧ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2))
21 breq12 4588 . . . 4 ((𝑓 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} ∧ 𝑝 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}) → (𝑓(𝐴(𝑉 PathOn 𝐸)𝐶)𝑝 ↔ {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}))
22 fveq2 6103 . . . . . 6 (𝑓 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} → (#‘𝑓) = (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}))
2322eqeq1d 2612 . . . . 5 (𝑓 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} → ((#‘𝑓) = 2 ↔ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2))
2423adantr 480 . . . 4 ((𝑓 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} ∧ 𝑝 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}) → ((#‘𝑓) = 2 ↔ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2))
2521, 24anbi12d 743 . . 3 ((𝑓 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} ∧ 𝑝 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}) → ((𝑓(𝐴(𝑉 PathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2) ↔ ({⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} ∧ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2)))
2625spc2egv 3268 . 2 (({⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} ∈ V ∧ {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} ∈ V) → (({⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} ∧ (#‘{⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}) = 2) → ∃𝑓𝑝(𝑓(𝐴(𝑉 PathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2)))
273, 20, 26mpsyl 66 1 ((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(𝑉 PathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  Vcvv 3173  {cpr 4127  {ctp 4129  cop 4131   class class class wbr 4583  ccnv 5037  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  #chash 12979   PathOn cpthon 26032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-trail 26037  df-pth 26038  df-wlkon 26042  df-pthon 26044
This theorem is referenced by:  2pthfrgra  26538
  Copyright terms: Public domain W3C validator