Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndf1 Structured version   Visualization version   GIF version

Theorem 2ndf1 16658
 Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
2ndfval.p 𝑄 = (𝐶 2ndF 𝐷)
2ndf1.p (𝜑𝑅𝐵)
Assertion
Ref Expression
2ndf1 (𝜑 → ((1st𝑄)‘𝑅) = (2nd𝑅))

Proof of Theorem 2ndf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfval.t . . . . 5 𝑇 = (𝐶 ×c 𝐷)
2 1stfval.b . . . . 5 𝐵 = (Base‘𝑇)
3 1stfval.h . . . . 5 𝐻 = (Hom ‘𝑇)
4 1stfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
5 1stfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
6 2ndfval.p . . . . 5 𝑄 = (𝐶 2ndF 𝐷)
71, 2, 3, 4, 5, 62ndfval 16657 . . . 4 (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
8 fo2nd 7080 . . . . . . 7 2nd :V–onto→V
9 fofun 6029 . . . . . . 7 (2nd :V–onto→V → Fun 2nd )
108, 9ax-mp 5 . . . . . 6 Fun 2nd
11 fvex 6113 . . . . . . 7 (Base‘𝑇) ∈ V
122, 11eqeltri 2684 . . . . . 6 𝐵 ∈ V
13 resfunexg 6384 . . . . . 6 ((Fun 2nd𝐵 ∈ V) → (2nd𝐵) ∈ V)
1410, 12, 13mp2an 704 . . . . 5 (2nd𝐵) ∈ V
1512, 12mpt2ex 7136 . . . . 5 (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V
1614, 15op1std 7069 . . . 4 (𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ → (1st𝑄) = (2nd𝐵))
177, 16syl 17 . . 3 (𝜑 → (1st𝑄) = (2nd𝐵))
1817fveq1d 6105 . 2 (𝜑 → ((1st𝑄)‘𝑅) = ((2nd𝐵)‘𝑅))
19 2ndf1.p . . 3 (𝜑𝑅𝐵)
20 fvres 6117 . . 3 (𝑅𝐵 → ((2nd𝐵)‘𝑅) = (2nd𝑅))
2119, 20syl 17 . 2 (𝜑 → ((2nd𝐵)‘𝑅) = (2nd𝑅))
2218, 21eqtrd 2644 1 (𝜑 → ((1st𝑄)‘𝑅) = (2nd𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ⟨cop 4131   ↾ cres 5040  Fun wfun 5798  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  Hom chom 15779  Catccat 16148   ×c cxpc 16631   2ndF c2ndf 16633 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-xpc 16635  df-2ndf 16637 This theorem is referenced by:  prf2nd  16668  1st2ndprf  16669  uncf1  16699  uncf2  16700  curf2ndf  16710  yonedalem21  16736  yonedalem22  16741
 Copyright terms: Public domain W3C validator