 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nd0 Structured version   Visualization version   GIF version

Theorem 2nd0 7066
 Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0 (2nd ‘∅) = ∅

Proof of Theorem 2nd0
StepHypRef Expression
1 2ndval 7062 . 2 (2nd ‘∅) = ran {∅}
2 dmsn0 5520 . . . 4 dom {∅} = ∅
3 dm0rn0 5263 . . . 4 (dom {∅} = ∅ ↔ ran {∅} = ∅)
42, 3mpbi 219 . . 3 ran {∅} = ∅
54unieqi 4381 . 2 ran {∅} =
6 uni0 4401 . 2 ∅ = ∅
71, 5, 63eqtri 2636 1 (2nd ‘∅) = ∅
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  ∅c0 3874  {csn 4125  ∪ cuni 4372  dom cdm 5038  ran crn 5039  ‘cfv 5804  2nd c2nd 7058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-2nd 7060 This theorem is referenced by:  smfval  26844
 Copyright terms: Public domain W3C validator