Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2nd0 | Structured version Visualization version GIF version |
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
Ref | Expression |
---|---|
2nd0 | ⊢ (2nd ‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndval 7062 | . 2 ⊢ (2nd ‘∅) = ∪ ran {∅} | |
2 | dmsn0 5520 | . . . 4 ⊢ dom {∅} = ∅ | |
3 | dm0rn0 5263 | . . . 4 ⊢ (dom {∅} = ∅ ↔ ran {∅} = ∅) | |
4 | 2, 3 | mpbi 219 | . . 3 ⊢ ran {∅} = ∅ |
5 | 4 | unieqi 4381 | . 2 ⊢ ∪ ran {∅} = ∪ ∅ |
6 | uni0 4401 | . 2 ⊢ ∪ ∅ = ∅ | |
7 | 1, 5, 6 | 3eqtri 2636 | 1 ⊢ (2nd ‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∅c0 3874 {csn 4125 ∪ cuni 4372 dom cdm 5038 ran crn 5039 ‘cfv 5804 2nd c2nd 7058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-2nd 7060 |
This theorem is referenced by: smfval 26844 |
Copyright terms: Public domain | W3C validator |