Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2leaddle2 Structured version   Visualization version   GIF version

Theorem 2leaddle2 40344
Description: If two real numbers are less than a third real number, the sum of the real numbers is less than twice the third real number. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
2leaddle2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶)))

Proof of Theorem 2leaddle2
StepHypRef Expression
1 readdcl 9898 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
213adant3 1074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
3 readdcl 9898 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ∈ ℝ)
43anidms 675 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 + 𝐶) ∈ ℝ)
543ad2ant3 1077 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ∈ ℝ)
6 2re 10967 . . . . . . 7 2 ∈ ℝ
7 remulcl 9900 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
86, 7mpan 702 . . . . . 6 (𝐶 ∈ ℝ → (2 · 𝐶) ∈ ℝ)
983ad2ant3 1077 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
102, 5, 93jca 1235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ))
1110adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ))
12 id 22 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13123adant3 1074 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
14 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ)
1514, 14jca 553 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
16153ad2ant3 1077 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
1713, 16jca 553 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
1817adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
19 simpr 476 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 < 𝐶𝐵 < 𝐶))
20 lt2add 10392 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (𝐶 + 𝐶)))
2118, 19, 20sylc 63 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) < (𝐶 + 𝐶))
22 recn 9905 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
23222timesd 11152 . . . . . . 7 (𝐶 ∈ ℝ → (2 · 𝐶) = (𝐶 + 𝐶))
248leidd 10473 . . . . . . 7 (𝐶 ∈ ℝ → (2 · 𝐶) ≤ (2 · 𝐶))
2523, 24eqbrtrrd 4607 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 + 𝐶) ≤ (2 · 𝐶))
26253ad2ant3 1077 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐶) ≤ (2 · 𝐶))
2726adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐶 + 𝐶) ≤ (2 · 𝐶))
2821, 27jca 553 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) < (𝐶 + 𝐶) ∧ (𝐶 + 𝐶) ≤ (2 · 𝐶)))
29 ltletr 10008 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐶) ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (((𝐴 + 𝐵) < (𝐶 + 𝐶) ∧ (𝐶 + 𝐶) ≤ (2 · 𝐶)) → (𝐴 + 𝐵) < (2 · 𝐶)))
3011, 28, 29sylc 63 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) < (2 · 𝐶))
3130ex 449 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐵 < 𝐶) → (𝐴 + 𝐵) < (2 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  2c2 10947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-2 10956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator