MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exsb Structured version   Visualization version   GIF version

Theorem 2exsb 2457
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.)
Assertion
Ref Expression
2exsb (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝑤,𝑧   𝜑,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2exsb
StepHypRef Expression
1 2sb8e 2455 . 2 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
2 2sb6 2432 . . 3 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
322exbii 1765 . 2 (∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
41, 3bitri 263 1 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wex 1695  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868
This theorem is referenced by:  2eu6  2546
  Copyright terms: Public domain W3C validator