Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp8 | Structured version Visualization version GIF version |
Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
2exp8 | ⊢ (2↑8) = ;;256 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 11186 | . 2 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 11188 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | 2 | nn0cni 11181 | . . 3 ⊢ 4 ∈ ℂ |
4 | 2cn 10968 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4t2e8 11058 | . . 3 ⊢ (4 · 2) = 8 | |
6 | 3, 4, 5 | mulcomli 9926 | . 2 ⊢ (2 · 4) = 8 |
7 | 2exp4 15632 | . 2 ⊢ (2↑4) = ;16 | |
8 | 1nn0 11185 | . . . 4 ⊢ 1 ∈ ℕ0 | |
9 | 6nn0 11190 | . . . 4 ⊢ 6 ∈ ℕ0 | |
10 | 8, 9 | deccl 11388 | . . 3 ⊢ ;16 ∈ ℕ0 |
11 | eqid 2610 | . . 3 ⊢ ;16 = ;16 | |
12 | 9nn0 11193 | . . 3 ⊢ 9 ∈ ℕ0 | |
13 | 10 | nn0cni 11181 | . . . . 5 ⊢ ;16 ∈ ℂ |
14 | 13 | mulid1i 9921 | . . . 4 ⊢ (;16 · 1) = ;16 |
15 | 1p1e2 11011 | . . . 4 ⊢ (1 + 1) = 2 | |
16 | 5nn0 11189 | . . . 4 ⊢ 5 ∈ ℕ0 | |
17 | 9cn 10985 | . . . . 5 ⊢ 9 ∈ ℂ | |
18 | 6cn 10979 | . . . . 5 ⊢ 6 ∈ ℂ | |
19 | 9p6e15 11500 | . . . . 5 ⊢ (9 + 6) = ;15 | |
20 | 17, 18, 19 | addcomli 10107 | . . . 4 ⊢ (6 + 9) = ;15 |
21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 11456 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
22 | 3nn0 11187 | . . . 4 ⊢ 3 ∈ ℕ0 | |
23 | 18 | mulid2i 9922 | . . . . . 6 ⊢ (1 · 6) = 6 |
24 | 23 | oveq1i 6559 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
25 | 6p3e9 11047 | . . . . 5 ⊢ (6 + 3) = 9 | |
26 | 24, 25 | eqtri 2632 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
27 | 6t6e36 11522 | . . . 4 ⊢ (6 · 6) = ;36 | |
28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 11463 | . . 3 ⊢ (;16 · 6) = ;96 |
29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 11465 | . 2 ⊢ (;16 · ;16) = ;;256 |
30 | 1, 2, 6, 7, 29 | numexp2x 15621 | 1 ⊢ (2↑8) = ;;256 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 (class class class)co 6549 1c1 9816 + caddc 9818 · cmul 9820 2c2 10947 3c3 10948 4c4 10949 5c5 10950 6c6 10951 8c8 10953 9c9 10954 ;cdc 11369 ↑cexp 12722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-seq 12664 df-exp 12723 |
This theorem is referenced by: 2exp16 15635 2503lem1 15682 quart1lem 24382 quart1 24383 fmtno3 40001 fmtno4sqrt 40021 2exp11 40055 |
Copyright terms: Public domain | W3C validator |