Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exeu | Structured version Visualization version GIF version |
Description: Double existential uniqueness implies double uniqueness quantification. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) |
Ref | Expression |
---|---|
2exeu | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2487 | . . . 4 ⊢ (∃!𝑥∃𝑦𝜑 → ∃*𝑥∃𝑦𝜑) | |
2 | euex 2482 | . . . . 5 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
3 | 2 | moimi 2508 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
5 | 2euex 2532 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 → ∃𝑥∃!𝑦𝜑) | |
6 | 4, 5 | anim12ci 589 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑)) |
7 | eu5 2484 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑)) | |
8 | 6, 7 | sylibr 223 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1695 ∃!weu 2458 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 df-mo 2463 |
This theorem is referenced by: 2eu1 2541 2eu2 2542 2eu3 2543 |
Copyright terms: Public domain | W3C validator |