Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2Wlklem | Structured version Visualization version GIF version |
Description: Lemma for upgr2wlk 40876 and 2wlklemA 26084. Identical with is2wlk 26095. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
2Wlklem | ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 9913 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 9914 | . 2 ⊢ 1 ∈ V | |
3 | fveq2 6103 | . . . 4 ⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) | |
4 | 3 | fveq2d 6107 | . . 3 ⊢ (𝑘 = 0 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘0))) |
5 | fveq2 6103 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
6 | oveq1 6556 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) | |
7 | 0p1e1 11009 | . . . . . 6 ⊢ (0 + 1) = 1 | |
8 | 6, 7 | syl6eq 2660 | . . . . 5 ⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
9 | 8 | fveq2d 6107 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
10 | 5, 9 | preq12d 4220 | . . 3 ⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
11 | 4, 10 | eqeq12d 2625 | . 2 ⊢ (𝑘 = 0 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
12 | fveq2 6103 | . . . 4 ⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) | |
13 | 12 | fveq2d 6107 | . . 3 ⊢ (𝑘 = 1 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘1))) |
14 | fveq2 6103 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
15 | oveq1 6556 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
16 | 1p1e2 11011 | . . . . . 6 ⊢ (1 + 1) = 2 | |
17 | 15, 16 | syl6eq 2660 | . . . . 5 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
18 | 17 | fveq2d 6107 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
19 | 14, 18 | preq12d 4220 | . . 3 ⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
20 | 13, 19 | eqeq12d 2625 | . 2 ⊢ (𝑘 = 1 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
21 | 1, 2, 11, 20 | ralpr 4185 | 1 ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∀wral 2896 {cpr 4127 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 + caddc 9818 2c2 10947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-2 10956 |
This theorem is referenced by: upgr2wlk 40876 |
Copyright terms: Public domain | W3C validator |