Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  21wlkdlem5 Structured version   Visualization version   GIF version

Theorem 21wlkdlem5 41136
 Description: Lemma 5 for 21wlkd 41143. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
21wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
21wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
21wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
21wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
21wlkdlem5 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐽(𝑘)   𝐾(𝑘)

Proof of Theorem 21wlkdlem5
StepHypRef Expression
1 21wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
2 21wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 21wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
4 21wlkd.s . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
52, 3, 421wlkdlem3 41134 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
6 simp1 1054 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴)
7 simp2 1055 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
86, 7neeq12d 2843 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
9 simp3 1056 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
107, 9neeq12d 2843 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
118, 10anbi12d 743 . . . . 5 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) ↔ (𝐴𝐵𝐵𝐶)))
1211bicomd 212 . . . 4 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴𝐵𝐵𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
135, 12syl 17 . . 3 (𝜑 → ((𝐴𝐵𝐵𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
141, 13mpbid 221 . 2 (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))
152, 321wlkdlem2 41133 . . . 4 (0..^(#‘𝐹)) = {0, 1}
1615raleqi 3119 . . 3 (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
17 c0ex 9913 . . . 4 0 ∈ V
18 1ex 9914 . . . 4 1 ∈ V
19 fveq2 6103 . . . . 5 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
20 oveq1 6556 . . . . . . 7 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
21 0p1e1 11009 . . . . . . 7 (0 + 1) = 1
2220, 21syl6eq 2660 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = 1)
2322fveq2d 6107 . . . . 5 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
2419, 23neeq12d 2843 . . . 4 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
25 fveq2 6103 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
26 oveq1 6556 . . . . . . 7 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
27 1p1e2 11011 . . . . . . 7 (1 + 1) = 2
2826, 27syl6eq 2660 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = 2)
2928fveq2d 6107 . . . . 5 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
3025, 29neeq12d 2843 . . . 4 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2)))
3117, 18, 24, 30ralpr 4185 . . 3 (∀𝑘 ∈ {0, 1} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3216, 31bitri 263 . 2 (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3314, 32sylibr 223 1 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {cpr 4127  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  2c2 10947  ..^cfzo 12334  #chash 12979  ⟨“cs2 13437  ⟨“cs3 13438 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445 This theorem is referenced by:  21wlkd  41143
 Copyright terms: Public domain W3C validator