Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1wlksonproplem Structured version   Visualization version   GIF version

Theorem 1wlksonproplem 40912
 Description: Lemma for theorems for properties of walks between two vertices, e.g. trlsonprop 40915. (Contributed by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
1wlksonproplem.v 𝑉 = (Vtx‘𝐺)
1wlksonproplem.b (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
1wlksonproplem.d 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
1wlksonproplem.w (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(1Walks‘𝐺)𝑝)
Assertion
Ref Expression
1wlksonproplem (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑔,𝑝   𝐵,𝑎,𝑏,𝑓,𝑔,𝑝   𝐺,𝑎,𝑏,𝑓,𝑔,𝑝   𝑂,𝑎,𝑏,𝑔   𝑄,𝑎,𝑏,𝑔   𝑉,𝑎,𝑏,𝑓,𝑔,𝑝
Allowed substitution hints:   𝑃(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑄(𝑓,𝑝)   𝐹(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑂(𝑓,𝑝)   𝑊(𝑓,𝑔,𝑝,𝑎,𝑏)

Proof of Theorem 1wlksonproplem
StepHypRef Expression
1 1wlksonproplem.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fvex 6113 . . . . . 6 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2684 . . . . 5 𝑉 ∈ V
4 1wlksonproplem.d . . . . . 6 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
5 simp1 1054 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
6 simp2 1055 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
76, 1syl6eleq 2698 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
8 simp3 1056 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
98, 1syl6eleq 2698 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
10 1wlksv 40824 . . . . . . . 8 {⟨𝑓, 𝑝⟩ ∣ 𝑓(1Walks‘𝐺)𝑝} ∈ V
1110a1i 11 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → {⟨𝑓, 𝑝⟩ ∣ 𝑓(1Walks‘𝐺)𝑝} ∈ V)
12 1wlksonproplem.w . . . . . . 7 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(1Walks‘𝐺)𝑝)
135, 7, 9, 11, 12, 4mptmpt2opabovd 40336 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴(𝑊𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑂𝐺)𝐵)𝑝𝑓(𝑄𝐺)𝑝)})
14 fveq2 6103 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1514, 1syl6eqr 2662 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
16 fveq2 6103 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1716oveqd 6566 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(𝑂𝑔)𝑏) = (𝑎(𝑂𝐺)𝑏))
1817breqd 4594 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑎(𝑂𝐺)𝑏)𝑝))
19 fveq2 6103 . . . . . . . 8 (𝑔 = 𝐺 → (𝑄𝑔) = (𝑄𝐺))
2019breqd 4594 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑄𝑔)𝑝𝑓(𝑄𝐺)𝑝))
2118, 20anbi12d 743 . . . . . 6 (𝑔 = 𝐺 → ((𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝) ↔ (𝑓(𝑎(𝑂𝐺)𝑏)𝑝𝑓(𝑄𝐺)𝑝)))
224, 13, 15, 15, 21bropfvvvv 7144 . . . . 5 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
233, 3, 22mp2an 704 . . . 4 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
24 3anass 1035 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)))
2524anbi1i 727 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
26 df-3an 1033 . . . . 5 ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2725, 26bitr4i 266 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2823, 27sylibr 223 . . 3 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
29 1wlksonproplem.b . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3029biimpd 218 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3130imdistani 722 . . 3 ((((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(𝑊𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3228, 31mpancom 700 . 2 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
33 df-3an 1033 . 2 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)) ↔ (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3432, 33sylibr 223 1 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583  {copab 4642   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Vtxcvtx 25673  1Walksc1wlks 40796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-1wlks 40800 This theorem is referenced by:  trlsonprop  40915  pthsonprop  40950  spthonprop  40951
 Copyright terms: Public domain W3C validator