Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1wlkp1lem2 | Structured version Visualization version GIF version |
Description: Lemma for 1wlkp1 40890. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
1wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
1wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
1wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
1wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
1wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
1wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
1wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
1wlkp1.w | ⊢ (𝜑 → 𝐹(1Walks‘𝐺)𝑃) |
1wlkp1.n | ⊢ 𝑁 = (#‘𝐹) |
1wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
1wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
1wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
1wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
Ref | Expression |
---|---|
1wlkp1lem2 | ⊢ (𝜑 → (#‘𝐻) = (𝑁 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
2 | 1 | fveq2i 6106 | . . 3 ⊢ (#‘𝐻) = (#‘(𝐹 ∪ {〈𝑁, 𝐵〉})) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (#‘𝐻) = (#‘(𝐹 ∪ {〈𝑁, 𝐵〉}))) |
4 | opex 4859 | . . 3 ⊢ 〈𝑁, 𝐵〉 ∈ V | |
5 | 1wlkp1.w | . . . . 5 ⊢ (𝜑 → 𝐹(1Walks‘𝐺)𝑃) | |
6 | 1wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | 1wlkf 40819 | . . . . 5 ⊢ (𝐹(1Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
8 | wrdfin 13178 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin) | |
9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Fin) |
10 | 1wlkp1.n | . . . . . 6 ⊢ 𝑁 = (#‘𝐹) | |
11 | fzonel 12352 | . . . . . . . 8 ⊢ ¬ (#‘𝐹) ∈ (0..^(#‘𝐹)) | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ¬ (#‘𝐹) ∈ (0..^(#‘𝐹))) |
13 | eleq1 2676 | . . . . . . . 8 ⊢ (𝑁 = (#‘𝐹) → (𝑁 ∈ (0..^(#‘𝐹)) ↔ (#‘𝐹) ∈ (0..^(#‘𝐹)))) | |
14 | 13 | notbid 307 | . . . . . . 7 ⊢ (𝑁 = (#‘𝐹) → (¬ 𝑁 ∈ (0..^(#‘𝐹)) ↔ ¬ (#‘𝐹) ∈ (0..^(#‘𝐹)))) |
15 | 12, 14 | syl5ibr 235 | . . . . . 6 ⊢ (𝑁 = (#‘𝐹) → (𝜑 → ¬ 𝑁 ∈ (0..^(#‘𝐹)))) |
16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ (𝜑 → ¬ 𝑁 ∈ (0..^(#‘𝐹))) |
17 | wrdfn 13174 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(#‘𝐹))) | |
18 | 5, 7, 17 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn (0..^(#‘𝐹))) |
19 | fnop 5908 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(#‘𝐹)) ∧ 〈𝑁, 𝐵〉 ∈ 𝐹) → 𝑁 ∈ (0..^(#‘𝐹))) | |
20 | 19 | ex 449 | . . . . . 6 ⊢ (𝐹 Fn (0..^(#‘𝐹)) → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(#‘𝐹)))) |
21 | 18, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (〈𝑁, 𝐵〉 ∈ 𝐹 → 𝑁 ∈ (0..^(#‘𝐹)))) |
22 | 16, 21 | mtod 188 | . . . 4 ⊢ (𝜑 → ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) |
23 | 9, 22 | jca 553 | . . 3 ⊢ (𝜑 → (𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹)) |
24 | hashunsng 13042 | . . 3 ⊢ (〈𝑁, 𝐵〉 ∈ V → ((𝐹 ∈ Fin ∧ ¬ 〈𝑁, 𝐵〉 ∈ 𝐹) → (#‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((#‘𝐹) + 1))) | |
25 | 4, 23, 24 | mpsyl 66 | . 2 ⊢ (𝜑 → (#‘(𝐹 ∪ {〈𝑁, 𝐵〉})) = ((#‘𝐹) + 1)) |
26 | 10 | eqcomi 2619 | . . . 4 ⊢ (#‘𝐹) = 𝑁 |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → (#‘𝐹) = 𝑁) |
28 | 27 | oveq1d 6564 | . 2 ⊢ (𝜑 → ((#‘𝐹) + 1) = (𝑁 + 1)) |
29 | 3, 25, 28 | 3eqtrd 2648 | 1 ⊢ (𝜑 → (#‘𝐻) = (𝑁 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∪ cun 3538 ⊆ wss 3540 {csn 4125 {cpr 4127 〈cop 4131 class class class wbr 4583 dom cdm 5038 Fun wfun 5798 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 0cc0 9815 1c1 9816 + caddc 9818 ..^cfzo 12334 #chash 12979 Word cword 13146 Vtxcvtx 25673 iEdgciedg 25674 Edgcedga 25792 1Walksc1wlks 40796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-1wlks 40800 |
This theorem is referenced by: 1wlkp1lem8 40889 1wlkp1 40890 eupthp1 41384 |
Copyright terms: Public domain | W3C validator |