 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndprf Structured version   Visualization version   GIF version

Theorem 1st2ndprf 16669
 Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
1st2ndprf.t 𝑇 = (𝐷 ×c 𝐸)
1st2ndprf.f (𝜑𝐹 ∈ (𝐶 Func 𝑇))
1st2ndprf.d (𝜑𝐷 ∈ Cat)
1st2ndprf.e (𝜑𝐸 ∈ Cat)
Assertion
Ref Expression
1st2ndprf (𝜑𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)))

Proof of Theorem 1st2ndprf
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 1st2ndprf.t . . . . . . 7 𝑇 = (𝐷 ×c 𝐸)
3 eqid 2610 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
4 eqid 2610 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
52, 3, 4xpcbas 16641 . . . . . 6 ((Base‘𝐷) × (Base‘𝐸)) = (Base‘𝑇)
6 relfunc 16345 . . . . . . 7 Rel (𝐶 Func 𝑇)
7 1st2ndprf.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝑇))
8 1st2ndbr 7108 . . . . . . 7 ((Rel (𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
96, 7, 8sylancr 694 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
101, 5, 9funcf1 16349 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸)))
1110feqmptd 6159 . . . 4 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)))
1210ffvelrnda 6267 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
13 1st2nd2 7096 . . . . . . 7 (((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)) → ((1st𝐹)‘𝑥) = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
1412, 13syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
157adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝑇))
16 1st2ndprf.d . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
17 1st2ndprf.e . . . . . . . . . . 11 (𝜑𝐸 ∈ Cat)
18 eqid 2610 . . . . . . . . . . 11 (𝐷 1stF 𝐸) = (𝐷 1stF 𝐸)
192, 16, 17, 181stfcl 16660 . . . . . . . . . 10 (𝜑 → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
2019adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
21 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
221, 15, 20, 21cofu1 16367 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷 1stF 𝐸))‘((1st𝐹)‘𝑥)))
23 eqid 2610 . . . . . . . . 9 (Hom ‘𝑇) = (Hom ‘𝑇)
2416adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
2517adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
262, 5, 23, 24, 25, 18, 121stf1 16655 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 1stF 𝐸))‘((1st𝐹)‘𝑥)) = (1st ‘((1st𝐹)‘𝑥)))
2722, 26eqtrd 2644 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥) = (1st ‘((1st𝐹)‘𝑥)))
28 eqid 2610 . . . . . . . . . . 11 (𝐷 2ndF 𝐸) = (𝐷 2ndF 𝐸)
292, 16, 17, 282ndfcl 16661 . . . . . . . . . 10 (𝜑 → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
3029adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
311, 15, 30, 21cofu1 16367 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷 2ndF 𝐸))‘((1st𝐹)‘𝑥)))
322, 5, 23, 24, 25, 28, 122ndf1 16658 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷 2ndF 𝐸))‘((1st𝐹)‘𝑥)) = (2nd ‘((1st𝐹)‘𝑥)))
3331, 32eqtrd 2644 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥) = (2nd ‘((1st𝐹)‘𝑥)))
3427, 33opeq12d 4348 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩ = ⟨(1st ‘((1st𝐹)‘𝑥)), (2nd ‘((1st𝐹)‘𝑥))⟩)
3514, 34eqtr4d 2647 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) = ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩)
3635mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐹)‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩))
3711, 36eqtrd 2644 . . 3 (𝜑 → (1st𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩))
381, 9funcfn2 16352 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
39 fnov 6666 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
4038, 39sylib 207 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
41 eqid 2610 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
429adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝑇)(2nd𝐹))
43 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
44 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
451, 41, 23, 42, 43, 44funcf2 16351 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))
4645feqmptd 6159 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)))
472, 23relxpchom 16644 . . . . . . . . . 10 Rel (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))
4845ffvelrnda 6267 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))
49 1st2nd 7105 . . . . . . . . . 10 ((Rel (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)) ∧ ((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
5047, 48, 49sylancr 694 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
517ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝑇))
5219ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷))
5343adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
5444adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
55 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
561, 51, 52, 53, 54, 41, 55cofu2 16369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
5716adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5817adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐸 ∈ Cat)
5912adantrr 749 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6010ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
6160adantrl 748 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸)))
622, 5, 23, 57, 58, 18, 59, 611stf2 16656 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦)) = (1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
6362adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦)) = (1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
6463fveq1d 6105 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
65 fvres 6117 . . . . . . . . . . . 12 (((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)) → ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6648, 65syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6756, 64, 663eqtrd 2648 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = (1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
6829ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸))
691, 51, 68, 53, 54, 41, 55cofu2 16369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
702, 5, 23, 57, 58, 28, 59, 612ndf2 16659 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦)) = (2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
7170adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦)) = (2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦))))
7271fveq1d 6105 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st𝐹)‘𝑦))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
73 fvres 6117 . . . . . . . . . . . 12 (((𝑥(2nd𝐹)𝑦)‘𝑓) ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)) → ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7448, 73syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑇)((1st𝐹)‘𝑦)))‘((𝑥(2nd𝐹)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7569, 72, 743eqtrd 2648 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓) = (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓)))
7667, 75opeq12d 4348 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩ = ⟨(1st ‘((𝑥(2nd𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd𝐹)𝑦)‘𝑓))⟩)
7750, 76eqtr4d 2647 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐹)𝑦)‘𝑓) = ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)
7877mpteq2dva 4672 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐹)𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
7946, 78eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
80793impb 1252 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))
8180mpt2eq3dva 6617 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)))
8240, 81eqtrd 2644 . . 3 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩)))
8337, 82opeq12d 4348 . 2 (𝜑 → ⟨(1st𝐹), (2nd𝐹)⟩ = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))⟩)
84 1st2nd 7105 . . 3 ((Rel (𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
856, 7, 84sylancr 694 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
86 eqid 2610 . . 3 (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)) = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹))
877, 19cofucl 16371 . . 3 (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝐹) ∈ (𝐶 Func 𝐷))
887, 29cofucl 16371 . . 3 (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝐹) ∈ (𝐶 Func 𝐸))
8986, 1, 41, 87, 88prfval 16662 . 2 (𝜑 → (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)) = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨((1st ‘((𝐷 1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷 2ndF 𝐸) ∘func 𝐹))‘𝑥)⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ⟨((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func 𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func 𝐹))𝑦)‘𝑓)⟩))⟩)
9083, 85, 893eqtr4d 2654 1 (𝜑𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) ⟨,⟩F ((𝐷 2ndF 𝐸) ∘func 𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036   ↾ cres 5040  Rel wrel 5043   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  Hom chom 15779  Catccat 16148   Func cfunc 16337   ∘func ccofu 16339   ×c cxpc 16631   1stF c1stf 16632   2ndF c2ndf 16633   ⟨,⟩F cprf 16634 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-func 16341  df-cofu 16343  df-xpc 16635  df-1stf 16636  df-2ndf 16637  df-prf 16638 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator