Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | 1st2ndprf.t |
. . . . . . 7
⊢ 𝑇 = (𝐷 ×c 𝐸) |
3 | | eqid 2610 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
4 | | eqid 2610 |
. . . . . . 7
⊢
(Base‘𝐸) =
(Base‘𝐸) |
5 | 2, 3, 4 | xpcbas 16641 |
. . . . . 6
⊢
((Base‘𝐷)
× (Base‘𝐸)) =
(Base‘𝑇) |
6 | | relfunc 16345 |
. . . . . . 7
⊢ Rel
(𝐶 Func 𝑇) |
7 | | 1st2ndprf.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝑇)) |
8 | | 1st2ndbr 7108 |
. . . . . . 7
⊢ ((Rel
(𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → (1st ‘𝐹)(𝐶 Func 𝑇)(2nd ‘𝐹)) |
9 | 6, 7, 8 | sylancr 694 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝑇)(2nd ‘𝐹)) |
10 | 1, 5, 9 | funcf1 16349 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶((Base‘𝐷) × (Base‘𝐸))) |
11 | 10 | feqmptd 6159 |
. . . 4
⊢ (𝜑 → (1st
‘𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st
‘𝐹)‘𝑥))) |
12 | 10 | ffvelrnda 6267 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸))) |
13 | | 1st2nd2 7096 |
. . . . . . 7
⊢
(((1st ‘𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸)) → ((1st ‘𝐹)‘𝑥) = 〈(1st
‘((1st ‘𝐹)‘𝑥)), (2nd ‘((1st
‘𝐹)‘𝑥))〉) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) = 〈(1st
‘((1st ‘𝐹)‘𝑥)), (2nd ‘((1st
‘𝐹)‘𝑥))〉) |
15 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹 ∈ (𝐶 Func 𝑇)) |
16 | | 1st2ndprf.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ Cat) |
17 | | 1st2ndprf.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ Cat) |
18 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (𝐷
1stF 𝐸) = (𝐷 1stF 𝐸) |
19 | 2, 16, 17, 18 | 1stfcl 16660 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷)) |
20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷)) |
21 | | simpr 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
22 | 1, 15, 20, 21 | cofu1 16367 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷
1stF 𝐸))‘((1st ‘𝐹)‘𝑥))) |
23 | | eqid 2610 |
. . . . . . . . 9
⊢ (Hom
‘𝑇) = (Hom
‘𝑇) |
24 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
25 | 17 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
26 | 2, 5, 23, 24, 25, 18, 12 | 1stf1 16655 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷
1stF 𝐸))‘((1st ‘𝐹)‘𝑥)) = (1st ‘((1st
‘𝐹)‘𝑥))) |
27 | 22, 26 | eqtrd 2644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥) = (1st ‘((1st
‘𝐹)‘𝑥))) |
28 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (𝐷
2ndF 𝐸) = (𝐷 2ndF 𝐸) |
29 | 2, 16, 17, 28 | 2ndfcl 16661 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸)) |
30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸)) |
31 | 1, 15, 30, 21 | cofu1 16367 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥) = ((1st ‘(𝐷
2ndF 𝐸))‘((1st ‘𝐹)‘𝑥))) |
32 | 2, 5, 23, 24, 25, 28, 12 | 2ndf1 16658 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝐷
2ndF 𝐸))‘((1st ‘𝐹)‘𝑥)) = (2nd ‘((1st
‘𝐹)‘𝑥))) |
33 | 31, 32 | eqtrd 2644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥) = (2nd ‘((1st
‘𝐹)‘𝑥))) |
34 | 27, 33 | opeq12d 4348 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈((1st
‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥)〉 = 〈(1st
‘((1st ‘𝐹)‘𝑥)), (2nd ‘((1st
‘𝐹)‘𝑥))〉) |
35 | 14, 34 | eqtr4d 2647 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) = 〈((1st ‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥)〉) |
36 | 35 | mpteq2dva 4672 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘𝐹)‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥)〉)) |
37 | 11, 36 | eqtrd 2644 |
. . 3
⊢ (𝜑 → (1st
‘𝐹) = (𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥)〉)) |
38 | 1, 9 | funcfn2 16352 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐹) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
39 | | fnov 6666 |
. . . . 5
⊢
((2nd ‘𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐹)𝑦))) |
40 | 38, 39 | sylib 207 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐹)𝑦))) |
41 | | eqid 2610 |
. . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
42 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘𝐹)(𝐶 Func 𝑇)(2nd ‘𝐹)) |
43 | | simprl 790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
44 | | simprr 792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
45 | 1, 41, 23, 42, 43, 44 | funcf2 16351 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦))) |
46 | 45 | feqmptd 6159 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
47 | 2, 23 | relxpchom 16644 |
. . . . . . . . . 10
⊢ Rel
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)) |
48 | 45 | ffvelrnda 6267 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦))) |
49 | | 1st2nd 7105 |
. . . . . . . . . 10
⊢ ((Rel
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)) ∧ ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦))) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) = 〈(1st ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))〉) |
50 | 47, 48, 49 | sylancr 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) = 〈(1st ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))〉) |
51 | 7 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐹 ∈ (𝐶 Func 𝑇)) |
52 | 19 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 1stF 𝐸) ∈ (𝑇 Func 𝐷)) |
53 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
54 | 44 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
55 | | simpr 476 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
56 | 1, 51, 52, 53, 54, 41, 55 | cofu2 16369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓) = ((((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st ‘𝐹)‘𝑦))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
57 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat) |
58 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐸 ∈ Cat) |
59 | 12 | adantrr 749 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐹)‘𝑥) ∈ ((Base‘𝐷) × (Base‘𝐸))) |
60 | 10 | ffvelrnda 6267 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸))) |
61 | 60 | adantrl 748 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘𝐹)‘𝑦) ∈ ((Base‘𝐷) × (Base‘𝐸))) |
62 | 2, 5, 23, 57, 58, 18, 59, 61 | 1stf2 16656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st ‘𝐹)‘𝑦)) = (1st ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))) |
63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st ‘𝐹)‘𝑦)) = (1st ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))) |
64 | 63 | fveq1d 6105 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 1stF 𝐸))((1st ‘𝐹)‘𝑦))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = ((1st ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
65 | | fvres 6117 |
. . . . . . . . . . . 12
⊢ (((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)) → ((1st ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
66 | 48, 65 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (1st ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
67 | 56, 64, 66 | 3eqtrd 2648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓) = (1st ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
68 | 29 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐷 2ndF 𝐸) ∈ (𝑇 Func 𝐸)) |
69 | 1, 51, 68, 53, 54, 41, 55 | cofu2 16369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓) = ((((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st ‘𝐹)‘𝑦))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
70 | 2, 5, 23, 57, 58, 28, 59, 61 | 2ndf2 16659 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st ‘𝐹)‘𝑦)) = (2nd ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))) |
71 | 70 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st ‘𝐹)‘𝑦)) = (2nd ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))) |
72 | 71 | fveq1d 6105 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((((1st ‘𝐹)‘𝑥)(2nd ‘(𝐷 2ndF 𝐸))((1st ‘𝐹)‘𝑦))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = ((2nd ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
73 | | fvres 6117 |
. . . . . . . . . . . 12
⊢ (((𝑥(2nd ‘𝐹)𝑦)‘𝑓) ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)) → ((2nd ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
74 | 48, 73 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((2nd ↾
(((1st ‘𝐹)‘𝑥)(Hom ‘𝑇)((1st ‘𝐹)‘𝑦)))‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (2nd ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
75 | 69, 72, 74 | 3eqtrd 2648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓) = (2nd ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))) |
76 | 67, 75 | opeq12d 4348 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉 = 〈(1st
‘((𝑥(2nd
‘𝐹)𝑦)‘𝑓)), (2nd ‘((𝑥(2nd ‘𝐹)𝑦)‘𝑓))〉) |
77 | 50, 76 | eqtr4d 2647 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘𝐹)𝑦)‘𝑓) = 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉) |
78 | 77 | mpteq2dva 4672 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘𝐹)𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉)) |
79 | 46, 78 | eqtrd 2644 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉)) |
80 | 79 | 3impb 1252 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘𝐹)𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉)) |
81 | 80 | mpt2eq3dva 6617 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐹)𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉))) |
82 | 40, 81 | eqtrd 2644 |
. . 3
⊢ (𝜑 → (2nd
‘𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉))) |
83 | 37, 82 | opeq12d 4348 |
. 2
⊢ (𝜑 → 〈(1st
‘𝐹), (2nd
‘𝐹)〉 =
〈(𝑥 ∈
(Base‘𝐶) ↦
〈((1st ‘((𝐷 1stF 𝐸) ∘func
𝐹))‘𝑥), ((1st
‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉))〉) |
84 | | 1st2nd 7105 |
. . 3
⊢ ((Rel
(𝐶 Func 𝑇) ∧ 𝐹 ∈ (𝐶 Func 𝑇)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
85 | 6, 7, 84 | sylancr 694 |
. 2
⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
86 | | eqid 2610 |
. . 3
⊢ (((𝐷
1stF 𝐸) ∘func 𝐹)
〈,〉F ((𝐷 2ndF 𝐸) ∘func
𝐹)) = (((𝐷 1stF 𝐸) ∘func
𝐹)
〈,〉F ((𝐷 2ndF 𝐸) ∘func
𝐹)) |
87 | 7, 19 | cofucl 16371 |
. . 3
⊢ (𝜑 → ((𝐷 1stF 𝐸) ∘func
𝐹) ∈ (𝐶 Func 𝐷)) |
88 | 7, 29 | cofucl 16371 |
. . 3
⊢ (𝜑 → ((𝐷 2ndF 𝐸) ∘func
𝐹) ∈ (𝐶 Func 𝐸)) |
89 | 86, 1, 41, 87, 88 | prfval 16662 |
. 2
⊢ (𝜑 → (((𝐷 1stF 𝐸) ∘func
𝐹)
〈,〉F ((𝐷 2ndF 𝐸) ∘func
𝐹)) = 〈(𝑥 ∈ (Base‘𝐶) ↦ 〈((1st
‘((𝐷
1stF 𝐸) ∘func 𝐹))‘𝑥), ((1st ‘((𝐷
2ndF 𝐸) ∘func 𝐹))‘𝑥)〉), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ 〈((𝑥(2nd ‘((𝐷 1stF 𝐸) ∘func
𝐹))𝑦)‘𝑓), ((𝑥(2nd ‘((𝐷 2ndF 𝐸) ∘func
𝐹))𝑦)‘𝑓)〉))〉) |
90 | 83, 85, 89 | 3eqtr4d 2654 |
1
⊢ (𝜑 → 𝐹 = (((𝐷 1stF 𝐸) ∘func
𝐹)
〈,〉F ((𝐷 2ndF 𝐸) ∘func
𝐹))) |