Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1pthond Structured version   Visualization version   GIF version

Theorem 1pthond 41311
 Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypotheses
Ref Expression
11wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
11wlkd.f 𝐹 = ⟨“𝐽”⟩
11wlkd.x (𝜑𝑋𝑉)
11wlkd.y (𝜑𝑌𝑉)
11wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
11wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
11wlkd.v 𝑉 = (Vtx‘𝐺)
11wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1pthond (𝜑𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃)

Proof of Theorem 1pthond
StepHypRef Expression
1 11wlkd.p . . . . 5 𝑃 = ⟨“𝑋𝑌”⟩
2 11wlkd.f . . . . 5 𝐹 = ⟨“𝐽”⟩
3 11wlkd.x . . . . 5 (𝜑𝑋𝑉)
4 11wlkd.y . . . . 5 (𝜑𝑌𝑉)
5 11wlkd.l . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
6 11wlkd.j . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
7 11wlkd.v . . . . 5 𝑉 = (Vtx‘𝐺)
8 11wlkd.i . . . . 5 𝐼 = (iEdg‘𝐺)
91, 2, 3, 4, 5, 6, 7, 811wlkd 41308 . . . 4 (𝜑𝐹(1Walks‘𝐺)𝑃)
101fveq1i 6104 . . . . . 6 (𝑃‘0) = (⟨“𝑋𝑌”⟩‘0)
11 s2fv0 13482 . . . . . 6 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
1210, 11syl5eq 2656 . . . . 5 (𝑋𝑉 → (𝑃‘0) = 𝑋)
133, 12syl 17 . . . 4 (𝜑 → (𝑃‘0) = 𝑋)
142fveq2i 6106 . . . . . . 7 (#‘𝐹) = (#‘⟨“𝐽”⟩)
15 s1len 13238 . . . . . . 7 (#‘⟨“𝐽”⟩) = 1
1614, 15eqtri 2632 . . . . . 6 (#‘𝐹) = 1
171, 16fveq12i 6108 . . . . 5 (𝑃‘(#‘𝐹)) = (⟨“𝑋𝑌”⟩‘1)
18 s2fv1 13483 . . . . . 6 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
194, 18syl 17 . . . . 5 (𝜑 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
2017, 19syl5eq 2656 . . . 4 (𝜑 → (𝑃‘(#‘𝐹)) = 𝑌)
21 wlkv 40815 . . . . . . 7 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
22 3simpc 1053 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
239, 21, 223syl 18 . . . . . 6 (𝜑 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
243, 4, 23jca31 555 . . . . 5 (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
257iswlkOn 40865 . . . . 5 (((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(#‘𝐹)) = 𝑌)))
2624, 25syl 17 . . . 4 (𝜑 → (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(#‘𝐹)) = 𝑌)))
279, 13, 20, 26mpbir3and 1238 . . 3 (𝜑𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃)
281, 2, 3, 4, 5, 6, 7, 81trld 41309 . . 3 (𝜑𝐹(TrailS‘𝐺)𝑃)
297istrlson 40914 . . . 4 (((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃𝐹(TrailS‘𝐺)𝑃)))
3024, 29syl 17 . . 3 (𝜑 → (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(WalksOn‘𝐺)𝑌)𝑃𝐹(TrailS‘𝐺)𝑃)))
3127, 28, 30mpbir2and 959 . 2 (𝜑𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃)
321, 2, 3, 4, 5, 6, 7, 81pthd 41310 . 2 (𝜑𝐹(PathS‘𝐺)𝑃)
333adantl 481 . . . . . . 7 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑋𝑉)
344adantl 481 . . . . . . 7 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → 𝑌𝑉)
35 simpl 472 . . . . . . 7 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
3633, 34, 35jca31 555 . . . . . 6 (((𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝜑) → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
3736ex 449 . . . . 5 ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
3821, 22, 373syl 18 . . . 4 (𝐹(1Walks‘𝐺)𝑃 → (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
399, 38mpcom 37 . . 3 (𝜑 → ((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
407ispthson 40948 . . 3 (((𝑋𝑉𝑌𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃𝐹(PathS‘𝐺)𝑃)))
4139, 40syl 17 . 2 (𝜑 → (𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃 ↔ (𝐹(𝑋(TrailsOn‘𝐺)𝑌)𝑃𝐹(PathS‘𝐺)𝑃)))
4231, 32, 41mpbir2and 959 1 (𝜑𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ⊆ wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  #chash 12979  ⟨“cs1 13149  ⟨“cs2 13437  Vtxcvtx 25673  iEdgciedg 25674  1Walksc1wlks 40796  WalksOncwlkson 40798  TrailSctrls 40899  TrailsOnctrlson 40900  PathScpths 40919  PathsOncpthson 40921 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-1wlks 40800  df-wlkson 40802  df-trls 40901  df-trlson 40902  df-pths 40923  df-pthson 40925 This theorem is referenced by:  upgr1pthond  41317  lppthon  41318  1pthon2v-av  41320
 Copyright terms: Public domain W3C validator