Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1hevtxdg1 Structured version   Visualization version   GIF version

Theorem 1hevtxdg1 40721
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 (not being a loop) is 1 if 𝐷 is incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg1.e (𝜑𝐸 ∈ 𝒫 𝑉)
1hevtxdg1.n (𝜑𝐷𝐸)
1hevtxdg1.l (𝜑 → 2 ≤ (#‘𝐸))
Assertion
Ref Expression
1hevtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)

Proof of Theorem 1hevtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
21dmeqd 5248 . . 3 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
3 1hevtxdg1.e . . . 4 (𝜑𝐸 ∈ 𝒫 𝑉)
4 dmsnopg 5524 . . . 4 (𝐸 ∈ 𝒫 𝑉 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
53, 4syl 17 . . 3 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
62, 5eqtrd 2644 . 2 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
7 1hevtxdg0.a . . . . . . 7 (𝜑𝐴𝑋)
8 1hevtxdg0.v . . . . . . . . . 10 (𝜑 → (Vtx‘𝐺) = 𝑉)
98pweqd 4113 . . . . . . . . 9 (𝜑 → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
103, 9eleqtrrd 2691 . . . . . . . 8 (𝜑𝐸 ∈ 𝒫 (Vtx‘𝐺))
11 1hevtxdg1.l . . . . . . . 8 (𝜑 → 2 ≤ (#‘𝐸))
12 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝐸 → (#‘𝑥) = (#‘𝐸))
1312breq2d 4595 . . . . . . . . 9 (𝑥 = 𝐸 → (2 ≤ (#‘𝑥) ↔ 2 ≤ (#‘𝐸)))
1413elrab 3331 . . . . . . . 8 (𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)} ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 2 ≤ (#‘𝐸)))
1510, 11, 14sylanbrc 695 . . . . . . 7 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
167, 15fsnd 6091 . . . . . 6 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
1716adantr 480 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
181adantr 480 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
19 simpr 476 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → dom (iEdg‘𝐺) = {𝐴})
2018, 19feq12d 5946 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)}))
2117, 20mpbird 246 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
22 1hevtxdg0.d . . . . . 6 (𝜑𝐷𝑉)
2322, 8eleqtrrd 2691 . . . . 5 (𝜑𝐷 ∈ (Vtx‘𝐺))
2423adantr 480 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → 𝐷 ∈ (Vtx‘𝐺))
25 eqid 2610 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
26 eqid 2610 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
27 eqid 2610 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
28 eqid 2610 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
2925, 26, 27, 28vtxdlfgrval 40700 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)} ∧ 𝐷 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐷) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
3021, 24, 29syl2anc 691 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
31 rabeq 3166 . . . . 5 (dom (iEdg‘𝐺) = {𝐴} → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3231adantl 481 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3332fveq2d 6107 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
34 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
3534eleq2d 2673 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
3635rabsnif 4202 . . . . . . 7 {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅)
37 1hevtxdg1.n . . . . . . . . 9 (𝜑𝐷𝐸)
381fveq1d 6105 . . . . . . . . . 10 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
39 fvsng 6352 . . . . . . . . . . 11 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
407, 3, 39syl2anc 691 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
4138, 40eqtrd 2644 . . . . . . . . 9 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
4237, 41eleqtrrd 2691 . . . . . . . 8 (𝜑𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
4342iftrued 4044 . . . . . . 7 (𝜑 → if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅) = {𝐴})
4436, 43syl5eq 2656 . . . . . 6 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝐴})
4544fveq2d 6107 . . . . 5 (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝐴}))
46 hashsng 13020 . . . . . 6 (𝐴𝑋 → (#‘{𝐴}) = 1)
477, 46syl 17 . . . . 5 (𝜑 → (#‘{𝐴}) = 1)
4845, 47eqtrd 2644 . . . 4 (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4948adantr 480 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
5030, 33, 493eqtrd 2648 . 2 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = 1)
516, 50mpdan 699 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125  cop 4131   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  1c1 9816  cle 9954  2c2 10947  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  VtxDegcvtxdg 40681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-hash 12980  df-vtxdg 40682
This theorem is referenced by:  1hegrvtxdg1  40723  p1evtxdp1  40730
  Copyright terms: Public domain W3C validator