Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.9v Structured version   Visualization version   GIF version

Theorem 19.9v 1883
 Description: Version of 19.9 2060 with a dv condition, requiring fewer axioms. Any formula can be existentially quantified using a variable which it does not contain. See also 19.3v 1884. (Contributed by NM, 28-May-1995.) Remove dependency on ax-7 1922. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.9v (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.9v
StepHypRef Expression
1 ax5e 1829 . 2 (∃𝑥𝜑𝜑)
2 19.8v 1882 . 2 (𝜑 → ∃𝑥𝜑)
31, 2impbii 198 1 (∃𝑥𝜑𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875 This theorem depends on definitions:  df-bi 196  df-ex 1696 This theorem is referenced by:  19.3v  1884  19.23v  1889  19.36v  1891  19.44v  1899  19.45v  1900  19.41v  1901  elsnxpOLD  5595  zfcndpow  9317  volfiniune  29620  bnj937  30096  bnj594  30236  bnj907  30289  bnj1128  30312  bnj1145  30315  bj-sbfvv  31953  prter2  33184  relopabVD  38159  rfcnnnub  38218
 Copyright terms: Public domain W3C validator