Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.9d | Structured version Visualization version GIF version |
Description: A deduction version of one direction of 19.9 2060. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) Revised to shorten other proofs. (Revised by Wolf Lammen, 14-Jul-2020.) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
Ref | Expression |
---|---|
19.9d.1 | ⊢ (𝜓 → Ⅎ𝑥𝜑) |
Ref | Expression |
---|---|
19.9d | ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9d.1 | . . 3 ⊢ (𝜓 → Ⅎ𝑥𝜑) | |
2 | df-nf 1701 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | sylib 207 | . 2 ⊢ (𝜓 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
4 | sp 2041 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
5 | 3, 4 | syl6 34 | 1 ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nf 1701 |
This theorem is referenced by: 19.9t 2059 exdistrf 2321 equvel 2335 copsexg 4882 19.9d2rf 28702 wl-exeq 32500 spd 42223 |
Copyright terms: Public domain | W3C validator |