Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.38 | Structured version Visualization version GIF version |
Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) Allow a shortening of 19.21t 2061. (Revised by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1697 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | pm2.21 119 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 2 | alimi 1730 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) |
4 | 1, 3 | sylbir 224 | . 2 ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) |
5 | ala1 1755 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓)) | |
6 | 4, 5 | ja 172 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: 19.21v 1855 19.23v 1889 19.21t 2061 19.21tOLD 2201 bj-19.21t 32005 bj-nfimt 32025 wl-nf2-nf 32464 pm10.53 37587 |
Copyright terms: Public domain | W3C validator |