Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.36i Structured version   Visualization version   GIF version

Theorem 19.36i 2086
 Description: Inference associated with 19.36 2085. See 19.36iv 1892 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.)
Hypotheses
Ref Expression
19.36.1 𝑥𝜓
19.36i.2 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.36i (∀𝑥𝜑𝜓)

Proof of Theorem 19.36i
StepHypRef Expression
1 19.36i.2 . 2 𝑥(𝜑𝜓)
2 19.36.1 . . 3 𝑥𝜓
3219.36 2085 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
41, 3mpbi 219 1 (∀𝑥𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473  ∃wex 1695  Ⅎwnf 1699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nf 1701 This theorem is referenced by:  spimv1  2101  spim  2242  vtoclf  3231  bj-vtoclf  32100
 Copyright terms: Public domain W3C validator