Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.36 | Structured version Visualization version GIF version |
Description: Theorem 19.36 of [Margaris] p. 90. See 19.36v 1891 for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
19.36.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.36 | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1794 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 19.36.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | 19.9 2060 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
4 | 3 | imbi2i 325 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
5 | 1, 4 | bitri 263 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nf 1701 |
This theorem is referenced by: 19.36i 2086 19.12vv 2168 spcimgft 3257 19.12b 30951 |
Copyright terms: Public domain | W3C validator |