Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.31v Structured version   Visualization version   GIF version

Theorem 19.31v 1857
 Description: Version of 19.31 2089 with a dv condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.)
Assertion
Ref Expression
19.31v (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.31v
StepHypRef Expression
1 19.32v 1856 . 2 (∀𝑥(𝜓𝜑) ↔ (𝜓 ∨ ∀𝑥𝜑))
2 orcom 401 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
32albii 1737 . 2 (∀𝑥(𝜑𝜓) ↔ ∀𝑥(𝜓𝜑))
4 orcom 401 . 2 ((∀𝑥𝜑𝜓) ↔ (𝜓 ∨ ∀𝑥𝜑))
51, 3, 43bitr4i 291 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∨ wo 382  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827 This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696 This theorem is referenced by:  19.31vv  37605
 Copyright terms: Public domain W3C validator