Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.12vvv Structured version   Visualization version   GIF version

Theorem 19.12vvv 1894
 Description: Version of 19.12vv 2168 with a dv condition, requiring fewer axioms. See also 19.12 2150. (Contributed by BJ, 18-Mar-2020.)
Assertion
Ref Expression
19.12vvv (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem 19.12vvv
StepHypRef Expression
1 19.21v 1855 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
21exbii 1764 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓))
3 19.36v 1891 . 2 (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
4 19.36v 1891 . . . 4 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
54albii 1737 . . 3 (∀𝑦𝑥(𝜑𝜓) ↔ ∀𝑦(∀𝑥𝜑𝜓))
6 19.21v 1855 . . 3 (∀𝑦(∀𝑥𝜑𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
75, 6bitr2i 264 . 2 ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
82, 3, 73bitri 285 1 (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875 This theorem depends on definitions:  df-bi 196  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator