Proof of Theorem 139prmALT
Step | Hyp | Ref
| Expression |
1 | | 1nn0 11185 |
. . . 4
⊢ 1 ∈
ℕ0 |
2 | | 3nn0 11187 |
. . . 4
⊢ 3 ∈
ℕ0 |
3 | 1, 2 | deccl 11388 |
. . 3
⊢ ;13 ∈
ℕ0 |
4 | | 9nn 11069 |
. . 3
⊢ 9 ∈
ℕ |
5 | 3, 4 | decnncl 11394 |
. 2
⊢ ;;139 ∈ ℕ |
6 | | 8nn0 11192 |
. . 3
⊢ 8 ∈
ℕ0 |
7 | | 4nn0 11188 |
. . 3
⊢ 4 ∈
ℕ0 |
8 | | 9nn0 11193 |
. . 3
⊢ 9 ∈
ℕ0 |
9 | | 1lt8 11098 |
. . 3
⊢ 1 <
8 |
10 | | 3lt10 11555 |
. . 3
⊢ 3 <
;10 |
11 | | 9lt10 11549 |
. . 3
⊢ 9 <
;10 |
12 | 1, 6, 2, 7, 8, 1, 9, 10, 11 | 3decltc 11414 |
. 2
⊢ ;;139 < ;;841 |
13 | | 3nn 11063 |
. . . 4
⊢ 3 ∈
ℕ |
14 | 1, 13 | decnncl 11394 |
. . 3
⊢ ;13 ∈ ℕ |
15 | | 1lt10 11557 |
. . 3
⊢ 1 <
;10 |
16 | 14, 8, 1, 15 | declti 11422 |
. 2
⊢ 1 <
;;139 |
17 | | 4t2e8 11058 |
. . 3
⊢ (4
· 2) = 8 |
18 | | df-9 10963 |
. . 3
⊢ 9 = (8 +
1) |
19 | 3, 7, 17, 18 | dec2dvds 15605 |
. 2
⊢ ¬ 2
∥ ;;139 |
20 | | 3ndvds4 40048 |
. . . 4
⊢ ¬ 3
∥ 4 |
21 | 1, 2 | 3dvdsdec 14892 |
. . . . 5
⊢ (3
∥ ;13 ↔ 3 ∥ (1 +
3)) |
22 | | 3cn 10972 |
. . . . . . 7
⊢ 3 ∈
ℂ |
23 | | ax-1cn 9873 |
. . . . . . 7
⊢ 1 ∈
ℂ |
24 | | 3p1e4 11030 |
. . . . . . 7
⊢ (3 + 1) =
4 |
25 | 22, 23, 24 | addcomli 10107 |
. . . . . 6
⊢ (1 + 3) =
4 |
26 | 25 | breq2i 4591 |
. . . . 5
⊢ (3
∥ (1 + 3) ↔ 3 ∥ 4) |
27 | 21, 26 | bitri 263 |
. . . 4
⊢ (3
∥ ;13 ↔ 3 ∥
4) |
28 | 20, 27 | mtbir 312 |
. . 3
⊢ ¬ 3
∥ ;13 |
29 | 1, 2, 8 | 3dvds2dec 14894 |
. . . 4
⊢ (3
∥ ;;139 ↔ 3 ∥ ((1 + 3) + 9)) |
30 | 25 | oveq1i 6559 |
. . . . . 6
⊢ ((1 + 3)
+ 9) = (4 + 9) |
31 | | 9cn 10985 |
. . . . . . 7
⊢ 9 ∈
ℂ |
32 | | 4cn 10975 |
. . . . . . 7
⊢ 4 ∈
ℂ |
33 | | 9p4e13 11498 |
. . . . . . 7
⊢ (9 + 4) =
;13 |
34 | 31, 32, 33 | addcomli 10107 |
. . . . . 6
⊢ (4 + 9) =
;13 |
35 | 30, 34 | eqtri 2632 |
. . . . 5
⊢ ((1 + 3)
+ 9) = ;13 |
36 | 35 | breq2i 4591 |
. . . 4
⊢ (3
∥ ((1 + 3) + 9) ↔ 3 ∥ ;13) |
37 | 29, 36 | bitri 263 |
. . 3
⊢ (3
∥ ;;139 ↔ 3 ∥ ;13) |
38 | 28, 37 | mtbir 312 |
. 2
⊢ ¬ 3
∥ ;;139 |
39 | | 4nn 11064 |
. . 3
⊢ 4 ∈
ℕ |
40 | | 4lt5 11077 |
. . 3
⊢ 4 <
5 |
41 | | 5p4e9 11044 |
. . 3
⊢ (5 + 4) =
9 |
42 | 3, 39, 40, 41 | dec5dvds2 15607 |
. 2
⊢ ¬ 5
∥ ;;139 |
43 | | 7nn 11067 |
. . 3
⊢ 7 ∈
ℕ |
44 | 1, 8 | deccl 11388 |
. . 3
⊢ ;19 ∈
ℕ0 |
45 | | 6nn 11066 |
. . 3
⊢ 6 ∈
ℕ |
46 | | 0nn0 11184 |
. . . 4
⊢ 0 ∈
ℕ0 |
47 | | 6nn0 11190 |
. . . 4
⊢ 6 ∈
ℕ0 |
48 | | eqid 2610 |
. . . 4
⊢ ;19 = ;19 |
49 | 47 | dec0h 11398 |
. . . 4
⊢ 6 = ;06 |
50 | | 7nn0 11191 |
. . . 4
⊢ 7 ∈
ℕ0 |
51 | | 7cn 10981 |
. . . . . . 7
⊢ 7 ∈
ℂ |
52 | 51 | mulid1i 9921 |
. . . . . 6
⊢ (7
· 1) = 7 |
53 | | 6cn 10979 |
. . . . . . 7
⊢ 6 ∈
ℂ |
54 | 53 | addid2i 10103 |
. . . . . 6
⊢ (0 + 6) =
6 |
55 | 52, 54 | oveq12i 6561 |
. . . . 5
⊢ ((7
· 1) + (0 + 6)) = (7 + 6) |
56 | | 7p6e13 11484 |
. . . . 5
⊢ (7 + 6) =
;13 |
57 | 55, 56 | eqtri 2632 |
. . . 4
⊢ ((7
· 1) + (0 + 6)) = ;13 |
58 | | 9t7e63 11544 |
. . . . . 6
⊢ (9
· 7) = ;63 |
59 | 31, 51, 58 | mulcomli 9926 |
. . . . 5
⊢ (7
· 9) = ;63 |
60 | | 6p3e9 11047 |
. . . . . 6
⊢ (6 + 3) =
9 |
61 | 53, 22, 60 | addcomli 10107 |
. . . . 5
⊢ (3 + 6) =
9 |
62 | 47, 2, 47, 59, 61 | decaddi 11455 |
. . . 4
⊢ ((7
· 9) + 6) = ;69 |
63 | 1, 8, 46, 47, 48, 49, 50, 8, 47, 57, 62 | decma2c 11444 |
. . 3
⊢ ((7
· ;19) + 6) = ;;139 |
64 | | 6lt7 11086 |
. . 3
⊢ 6 <
7 |
65 | 43, 44, 45, 63, 64 | ndvdsi 14974 |
. 2
⊢ ¬ 7
∥ ;;139 |
66 | | 1nn 10908 |
. . . 4
⊢ 1 ∈
ℕ |
67 | 1, 66 | decnncl 11394 |
. . 3
⊢ ;11 ∈ ℕ |
68 | | 2nn0 11186 |
. . . 4
⊢ 2 ∈
ℕ0 |
69 | 1, 68 | deccl 11388 |
. . 3
⊢ ;12 ∈
ℕ0 |
70 | | eqid 2610 |
. . . 4
⊢ ;12 = ;12 |
71 | 50 | dec0h 11398 |
. . . 4
⊢ 7 = ;07 |
72 | 1, 1 | deccl 11388 |
. . . 4
⊢ ;11 ∈
ℕ0 |
73 | | 2cn 10968 |
. . . . . . 7
⊢ 2 ∈
ℂ |
74 | 73 | addid2i 10103 |
. . . . . 6
⊢ (0 + 2) =
2 |
75 | 74 | oveq2i 6560 |
. . . . 5
⊢ ((;11 · 1) + (0 + 2)) = ((;11 · 1) + 2) |
76 | 67 | nncni 10907 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
77 | 76 | mulid1i 9921 |
. . . . . 6
⊢ (;11 · 1) = ;11 |
78 | | 1p2e3 11029 |
. . . . . 6
⊢ (1 + 2) =
3 |
79 | 1, 1, 68, 77, 78 | decaddi 11455 |
. . . . 5
⊢ ((;11 · 1) + 2) = ;13 |
80 | 75, 79 | eqtri 2632 |
. . . 4
⊢ ((;11 · 1) + (0 + 2)) = ;13 |
81 | | eqid 2610 |
. . . . 5
⊢ ;11 = ;11 |
82 | 73 | mulid2i 9922 |
. . . . . . 7
⊢ (1
· 2) = 2 |
83 | | 00id 10090 |
. . . . . . 7
⊢ (0 + 0) =
0 |
84 | 82, 83 | oveq12i 6561 |
. . . . . 6
⊢ ((1
· 2) + (0 + 0)) = (2 + 0) |
85 | 73 | addid1i 10102 |
. . . . . 6
⊢ (2 + 0) =
2 |
86 | 84, 85 | eqtri 2632 |
. . . . 5
⊢ ((1
· 2) + (0 + 0)) = 2 |
87 | 82 | oveq1i 6559 |
. . . . . 6
⊢ ((1
· 2) + 7) = (2 + 7) |
88 | | 7p2e9 11049 |
. . . . . . 7
⊢ (7 + 2) =
9 |
89 | 51, 73, 88 | addcomli 10107 |
. . . . . 6
⊢ (2 + 7) =
9 |
90 | 8 | dec0h 11398 |
. . . . . 6
⊢ 9 = ;09 |
91 | 87, 89, 90 | 3eqtri 2636 |
. . . . 5
⊢ ((1
· 2) + 7) = ;09 |
92 | 1, 1, 46, 50, 81, 71, 68, 8, 46, 86, 91 | decmac 11442 |
. . . 4
⊢ ((;11 · 2) + 7) = ;29 |
93 | 1, 68, 46, 50, 70, 71, 72, 8, 68, 80, 92 | decma2c 11444 |
. . 3
⊢ ((;11 · ;12) + 7) = ;;139 |
94 | | 7lt10 11551 |
. . . 4
⊢ 7 <
;10 |
95 | 66, 1, 50, 94 | declti 11422 |
. . 3
⊢ 7 <
;11 |
96 | 67, 69, 43, 93, 95 | ndvdsi 14974 |
. 2
⊢ ¬
;11 ∥ ;;139 |
97 | 1, 46 | deccl 11388 |
. . 3
⊢ ;10 ∈
ℕ0 |
98 | | eqid 2610 |
. . . 4
⊢ ;10 = ;10 |
99 | 3 | nn0cni 11181 |
. . . . . . 7
⊢ ;13 ∈ ℂ |
100 | 99 | mulid1i 9921 |
. . . . . 6
⊢ (;13 · 1) = ;13 |
101 | 100, 83 | oveq12i 6561 |
. . . . 5
⊢ ((;13 · 1) + (0 + 0)) = (;13 + 0) |
102 | 99 | addid1i 10102 |
. . . . 5
⊢ (;13 + 0) = ;13 |
103 | 101, 102 | eqtri 2632 |
. . . 4
⊢ ((;13 · 1) + (0 + 0)) = ;13 |
104 | 99 | mul01i 10105 |
. . . . . 6
⊢ (;13 · 0) = 0 |
105 | 104 | oveq1i 6559 |
. . . . 5
⊢ ((;13 · 0) + 9) = (0 +
9) |
106 | 31 | addid2i 10103 |
. . . . 5
⊢ (0 + 9) =
9 |
107 | 105, 106,
90 | 3eqtri 2636 |
. . . 4
⊢ ((;13 · 0) + 9) = ;09 |
108 | 1, 46, 46, 8, 98, 90, 3, 8, 46, 103, 107 | decma2c 11444 |
. . 3
⊢ ((;13 · ;10) + 9) = ;;139 |
109 | 66, 2, 8, 11 | declti 11422 |
. . 3
⊢ 9 <
;13 |
110 | 14, 97, 4, 108, 109 | ndvdsi 14974 |
. 2
⊢ ¬
;13 ∥ ;;139 |
111 | 1, 43 | decnncl 11394 |
. . 3
⊢ ;17 ∈ ℕ |
112 | | eqid 2610 |
. . . 4
⊢ ;17 = ;17 |
113 | 2 | dec0h 11398 |
. . . 4
⊢ 3 = ;03 |
114 | | 5nn0 11189 |
. . . 4
⊢ 5 ∈
ℕ0 |
115 | | 8cn 10983 |
. . . . . . 7
⊢ 8 ∈
ℂ |
116 | 115 | mulid2i 9922 |
. . . . . 6
⊢ (1
· 8) = 8 |
117 | | 5cn 10977 |
. . . . . . 7
⊢ 5 ∈
ℂ |
118 | 117 | addid2i 10103 |
. . . . . 6
⊢ (0 + 5) =
5 |
119 | 116, 118 | oveq12i 6561 |
. . . . 5
⊢ ((1
· 8) + (0 + 5)) = (8 + 5) |
120 | | 8p5e13 11491 |
. . . . 5
⊢ (8 + 5) =
;13 |
121 | 119, 120 | eqtri 2632 |
. . . 4
⊢ ((1
· 8) + (0 + 5)) = ;13 |
122 | | 8t7e56 11537 |
. . . . . 6
⊢ (8
· 7) = ;56 |
123 | 115, 51, 122 | mulcomli 9926 |
. . . . 5
⊢ (7
· 8) = ;56 |
124 | 114, 47, 2, 123, 60 | decaddi 11455 |
. . . 4
⊢ ((7
· 8) + 3) = ;59 |
125 | 1, 50, 46, 2, 112, 113, 6, 8, 114, 121, 124 | decmac 11442 |
. . 3
⊢ ((;17 · 8) + 3) = ;;139 |
126 | 66, 50, 2, 10 | declti 11422 |
. . 3
⊢ 3 <
;17 |
127 | 111, 6, 13, 125, 126 | ndvdsi 14974 |
. 2
⊢ ¬
;17 ∥ ;;139 |
128 | 1, 4 | decnncl 11394 |
. . 3
⊢ ;19 ∈ ℕ |
129 | 51 | mulid2i 9922 |
. . . . . 6
⊢ (1
· 7) = 7 |
130 | 129, 54 | oveq12i 6561 |
. . . . 5
⊢ ((1
· 7) + (0 + 6)) = (7 + 6) |
131 | 130, 56 | eqtri 2632 |
. . . 4
⊢ ((1
· 7) + (0 + 6)) = ;13 |
132 | 47, 2, 47, 58, 61 | decaddi 11455 |
. . . 4
⊢ ((9
· 7) + 6) = ;69 |
133 | 1, 8, 46, 47, 48, 49, 50, 8, 47, 131, 132 | decmac 11442 |
. . 3
⊢ ((;19 · 7) + 6) = ;;139 |
134 | | 6lt10 11552 |
. . . 4
⊢ 6 <
;10 |
135 | 66, 8, 47, 134 | declti 11422 |
. . 3
⊢ 6 <
;19 |
136 | 128, 50, 45, 133, 135 | ndvdsi 14974 |
. 2
⊢ ¬
;19 ∥ ;;139 |
137 | 68, 13 | decnncl 11394 |
. . 3
⊢ ;23 ∈ ℕ |
138 | | eqid 2610 |
. . . 4
⊢ ;23 = ;23 |
139 | | 2p1e3 11028 |
. . . . 5
⊢ (2 + 1) =
3 |
140 | | 6t2e12 11517 |
. . . . . 6
⊢ (6
· 2) = ;12 |
141 | 53, 73, 140 | mulcomli 9926 |
. . . . 5
⊢ (2
· 6) = ;12 |
142 | 1, 68, 139, 141 | decsuc 11411 |
. . . 4
⊢ ((2
· 6) + 1) = ;13 |
143 | | 8p1e9 11035 |
. . . . 5
⊢ (8 + 1) =
9 |
144 | | 6t3e18 11518 |
. . . . . 6
⊢ (6
· 3) = ;18 |
145 | 53, 22, 144 | mulcomli 9926 |
. . . . 5
⊢ (3
· 6) = ;18 |
146 | 1, 6, 143, 145 | decsuc 11411 |
. . . 4
⊢ ((3
· 6) + 1) = ;19 |
147 | 68, 2, 1, 138, 47, 8, 1, 142, 146 | decrmac 11453 |
. . 3
⊢ ((;23 · 6) + 1) = ;;139 |
148 | | 2nn 11062 |
. . . 4
⊢ 2 ∈
ℕ |
149 | 148, 2, 1, 15 | declti 11422 |
. . 3
⊢ 1 <
;23 |
150 | 137, 47, 66, 147, 149 | ndvdsi 14974 |
. 2
⊢ ¬
;23 ∥ ;;139 |
151 | 5, 12, 16, 19, 38, 42, 65, 96, 110, 127, 136, 150 | prmlem2 15665 |
1
⊢ ;;139 ∈ ℙ |