Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  11wlkdlem2 Structured version   Visualization version   GIF version

Theorem 11wlkdlem2 41305
 Description: Lemma 2 for 11wlkd 41308. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
11wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
11wlkd.f 𝐹 = ⟨“𝐽”⟩
11wlkd.x (𝜑𝑋𝑉)
11wlkd.y (𝜑𝑌𝑉)
11wlkd.l ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
11wlkd.j ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
Assertion
Ref Expression
11wlkdlem2 (𝜑𝑋 ∈ (𝐼𝐽))

Proof of Theorem 11wlkdlem2
StepHypRef Expression
1 11wlkd.x . . . . 5 (𝜑𝑋𝑉)
2 snidg 4153 . . . . 5 (𝑋𝑉𝑋 ∈ {𝑋})
31, 2syl 17 . . . 4 (𝜑𝑋 ∈ {𝑋})
43adantr 480 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ {𝑋})
5 11wlkd.l . . 3 ((𝜑𝑋 = 𝑌) → (𝐼𝐽) = {𝑋})
64, 5eleqtrrd 2691 . 2 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝐼𝐽))
7 11wlkd.j . . . 4 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ (𝐼𝐽))
8 11wlkd.y . . . . . 6 (𝜑𝑌𝑉)
98adantr 480 . . . . 5 ((𝜑𝑋𝑌) → 𝑌𝑉)
10 prssg 4290 . . . . 5 ((𝑋𝑉𝑌𝑉) → ((𝑋 ∈ (𝐼𝐽) ∧ 𝑌 ∈ (𝐼𝐽)) ↔ {𝑋, 𝑌} ⊆ (𝐼𝐽)))
111, 9, 10syl2an2r 872 . . . 4 ((𝜑𝑋𝑌) → ((𝑋 ∈ (𝐼𝐽) ∧ 𝑌 ∈ (𝐼𝐽)) ↔ {𝑋, 𝑌} ⊆ (𝐼𝐽)))
127, 11mpbird 246 . . 3 ((𝜑𝑋𝑌) → (𝑋 ∈ (𝐼𝐽) ∧ 𝑌 ∈ (𝐼𝐽)))
1312simpld 474 . 2 ((𝜑𝑋𝑌) → 𝑋 ∈ (𝐼𝐽))
146, 13pm2.61dane 2869 1 (𝜑𝑋 ∈ (𝐼𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ⊆ wss 3540  {csn 4125  {cpr 4127  ‘cfv 5804  ⟨“cs1 13149  ⟨“cs2 13437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-sn 4126  df-pr 4128 This theorem is referenced by:  11wlkdlem3  41306  11wlkdlem4  41307
 Copyright terms: Public domain W3C validator