Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0wlk | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
Ref | Expression |
---|---|
0wlk | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝑃 ∈ 𝑍) → (∅(𝑉 Walks 𝐸)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4718 | . . 3 ⊢ ∅ ∈ V | |
2 | iswlk 26048 | . . 3 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (∅ ∈ V ∧ 𝑃 ∈ 𝑍)) → (∅(𝑉 Walks 𝐸)𝑃 ↔ (∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | |
3 | 1, 2 | mpanr1 715 | . 2 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝑃 ∈ 𝑍) → (∅(𝑉 Walks 𝐸)𝑃 ↔ (∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
4 | ral0 4028 | . . . . 5 ⊢ ∀𝑘 ∈ ∅ (𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} | |
5 | hash0 13019 | . . . . . . . 8 ⊢ (#‘∅) = 0 | |
6 | 5 | oveq2i 6560 | . . . . . . 7 ⊢ (0..^(#‘∅)) = (0..^0) |
7 | fzo0 12361 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
8 | 6, 7 | eqtri 2632 | . . . . . 6 ⊢ (0..^(#‘∅)) = ∅ |
9 | 8 | raleqi 3119 | . . . . 5 ⊢ (∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ ∅ (𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
10 | 4, 9 | mpbir 220 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
11 | 10 | biantru 525 | . . 3 ⊢ ((∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉) ↔ ((∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
12 | 5 | eqcomi 2619 | . . . . . 6 ⊢ 0 = (#‘∅) |
13 | 12 | oveq2i 6560 | . . . . 5 ⊢ (0...0) = (0...(#‘∅)) |
14 | 13 | feq2i 5950 | . . . 4 ⊢ (𝑃:(0...0)⟶𝑉 ↔ 𝑃:(0...(#‘∅))⟶𝑉) |
15 | wrd0 13185 | . . . . 5 ⊢ ∅ ∈ Word dom 𝐸 | |
16 | 15 | biantrur 526 | . . . 4 ⊢ (𝑃:(0...(#‘∅))⟶𝑉 ↔ (∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉)) |
17 | 14, 16 | bitri 263 | . . 3 ⊢ (𝑃:(0...0)⟶𝑉 ↔ (∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉)) |
18 | df-3an 1033 | . . 3 ⊢ ((∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) | |
19 | 11, 17, 18 | 3bitr4ri 292 | . 2 ⊢ ((∅ ∈ Word dom 𝐸 ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))(𝐸‘(∅‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ 𝑃:(0...0)⟶𝑉) |
20 | 3, 19 | syl6bb 275 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝑃 ∈ 𝑍) → (∅(𝑉 Walks 𝐸)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ∅c0 3874 {cpr 4127 class class class wbr 4583 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 0cc0 9815 1c1 9816 + caddc 9818 ...cfz 12197 ..^cfzo 12334 #chash 12979 Word cword 13146 Walks cwalk 26026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-wlk 26036 |
This theorem is referenced by: 0wlkon 26077 0clwlk 26293 |
Copyright terms: Public domain | W3C validator |