Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0pssin Structured version   Visualization version   GIF version

Theorem 0pssin 37084
 Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.)
Assertion
Ref Expression
0pssin (∅ ⊊ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem 0pssin
StepHypRef Expression
1 0pss 3965 . 2 (∅ ⊊ (𝐴𝐵) ↔ (𝐴𝐵) ≠ ∅)
2 ndisj 37083 . 2 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
31, 2bitri 263 1 (∅ ⊊ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780   ∩ cin 3539   ⊊ wpss 3541  ∅c0 3874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator